Домой Рукоделие Что значит отстройка от параллакса. Параллакс и аберрации оптических прицелов. Прицелы с заводской отстройкой от параллакса

Что значит отстройка от параллакса. Параллакс и аберрации оптических прицелов. Прицелы с заводской отстройкой от параллакса

Параллакс - явление, обнаруживаемое при наблюдении окружающего пространства, заключающееся в видимом изменении положения одних неподвижных предметов относительно других, расположенных на разных расстояниях друг от друга, при перемещении глаза наблюдателя. С явлением параллакса мы встречаемся на каждом шагу. Например, выглядывая из окна вагона движущегося поезда, мы замечаем, что ландшафт, как бы вращается вокруг удалённого центра в направлении, обратном движению поезда. Близкие предметы уходят из поля зрения быстрее, чем дальние, поэтому и создается впечатление вращения ландшафта. Если предметы лежат в одной плоскости, то параллакс исчезнет, не будет различных перемещений предметов относительно друг друга при перемещении глаза.

Параллаксом в прицелах называют несовпадение плоскости изображения цели, сформированного объективом с плоскостью прицельной сетки прицела. Наклон сетки вызывает параллакс на краях поля зрения. Это называют косым параллаксом. Отсутствие в прицеле плоского изображения цели по всему полю зрения, обусловленного некачественным изготовлением линз и сборки прицела, или при значительных аберрациях оптической системы, вызывает "неустранимый параллакс". Обычно прицел изготавливается таким образом, что изображение удалённой на 100-200 м цели проецируется объективом в плоскость, где расположена прицельная сетка. В этом случае диапазон параллакса как бы располовинивается между дальними и ближними целями. При приближении цели к стрелку её изображение тоже смещается ближе к стрелку (в оптической системе цель и её изображение движутся в одну и ту же сторону). Таким образом, в общем случае для прицела характерно несовпадение изображения цели и сетки. При смещении глаза перпендикулярно оси прицела изображение цели движется в большинстве случаев в ту же сторону относительно центра сетки. Цель как бы "съезжает" с прицельной точки, при наклонах, покачивании головы "мечется" вокруг прицельной точки. Кроме того, сетка и цель не видны одновременно резко, что ухудшает комфортность прицеливания и сводит к минимуму основное преимущество телескопического прицела перед обычным. Из-за этого прицел без фокусировки на дистанцию стрельбы (без устройства устранения параллакса) позволяет осуществить высокоточный выстрел только на одной конкретной дистанции. Качественный прицел с увеличением большим, чем 4х обязательно должен иметь устройство для устранения параллакса. Без этого достаточно трудно найти и удерживать глаз в нужном положении, на линии, соединяющей прицельную метку и точку на цели, сетка в общем случае не находится в центре поля зрения. Небольшое движение прицельной сетки вместе с изображением цели можно обнаружить при покачивании головой, особенно при смещении глаза от расчетного положения выходного зрачка, что объясняется наличием дисторсии в окуляре прицела. Устранить это можно только в прицелах, имеющих параболическую линзу в окуляре. Фокусировкой прицела называют операцию установки изображения, даваемого объективом в заданную плоскость - плоскость прицельной сетки. Расчётным путём определяется зависимость между продольным сдвигом фокусирующей линзы и величиной смещения изображения. Обычно в прицелах перемещают или весь объектив или его внутренний компонент, расположенный вблизи сетки. На оправе объектива прицела наносится шкала, обозначающая дистанцию фокусировки в метрах. Переместив объектив на нужное вам деление (дистанцию стрельбы) вы устраняете параллакс. Прицел, содержащий устройство фокусировки, безусловно, более высококлассное и сложное изделие, поскольку перемещающаяся линза должна сохранять свое положение в пространстве относительно собственной оси, то есть сохранять неизменной линию визирования. Это центрирование фокусирующего компонента объектива относительно геометрической оси трубы объектива достигается за счёт соблюдения жёстких допусков при изготовлении фокусирующего компонента.

Как же узнать, исправлен ваш прицел на параллакс или нет? Очень просто. Необходимо навести центр сетки прицела на объект, находящийся на бесконечности, зафиксировать прицел, и, перемещая глаз по всему выходному зрачку прицела, наблюдать за взаимным положением изображения объекта и сетки прицела,. Если взаимное положение объекта и сетки не изменяется, то вам крупно повезло - прицел исправлен на параллакс. Люди, имеющие доступ к лабораторному оптическому оборудованию могут использовать оптическую скамью и лабораторный коллиматор для создания бесконечно удаленной точки визирования. Остальные могут использовать пристрелочный станок и любой малогабаритный объект, расположенный на расстоянии больше 300 метров. Этим же нехитрым способом можно определять наличие или отсутствие параллакса в коллиматорных прицелах. У этих прицелов отсутствие параллакса - большой плюс, так как скорость прицеливания в таких моделях существенно возрастает за счет использования всего диаметра оптики.

В связи с большим распространением среди людей, близких к стрелковому спорту (снайпер - тоже спортсмен) и охоте, большого количества разнообразных оптических приборов (биноклей, зрительных труб, телескопических и коллиматорных прицелов) все чаще стали возникать вопросы, связанные с качеством изображения, даваемого такими приборами, а также о факторах, влияющих на точность прицеливания.

Начнем с понятия аберрации . Любой реальный оптико-механический прибор является произведенной человеком из каких-то материалов ухудшенной версией идеального прибора, модель которого рассчитывается исходя из простых законов геометрической оптики. Так в идеальном приборе каждой точке рассматриваемого предмета соответствует определенная точка изображения. На самом же деле это не так. Точка никогда не изображается точкой. Ошибки или погрешности изображений в оптической системе, вызываемые отклонениями луча от того направления, по которому он должен был бы идти в идеальной оптической системе, называются аберрациями. Аберрации бывают разные. Наиболее распространены следующие виды аберраций оптических систем: сферическая аберрация, кома, астигматизм и дисторсия . К аберрациям также относятся кривизна поля изображения и хроматическая аберрация (связана с зависимостью показателя преломления оптической среды от длины волны света).

Сферическая аберрация - проявляется в несовпадении главных фокусов для лучей света, прошедших через осесимметричную систему (линзу, объектив и т.д.) на разных расстояниях от оптической оси системы. Вследствие сферической аберрации изображение светящейся точки имеет вид не точки, а окружности с ярким ядром и ослабевающим к периферии ореолом. Исправление сферической аберрации осуществляется подбором определенного сочетания положительных и отрицательных линз, обладающих одинаковыми аберрациями, но с разными знаками. Исправить сферическую аберрацию можно в одиночной линзе используя асферические преломляющие поверхности (вместо сферы, например, поверхность параболоида вращения или что-то подобное).

Кома. Кривизна поверхности оптических систем кроме сферической аберрации вызывает также и другую погрешность - кому. Лучи, идущие от точки объекта, лежащей вне оптической оси системы, образуют в плоскости изображения в двух взаимно перпендикулярных направлениях сложное несимметричное пятно рассеяния, напоминающее по виду запятую (comma, англ. - запятая). В сложных оптических системах кому исправляют совместно со сферической аберрацией подбором линз.

Астигматизм заключается в том, что сферическая поверхность световой волны при прохождении оптической системы может деформироваться, и тогда изображение точки, не лежащей на главной оптической оси системы, представляет собой уже не точку, а две взаимно перпендикулярные линии, расположенные на разных плоскостях на некотором расстоянии друг от друга. Изображения точки в промежуточных между этими плоскостями сечениях имеют вид эллипсов, одно из них имеет форму круга. Астигматизм обусловлен неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка. Астигматизм может быть исправлен таким подбором линз, чтобы одна компенсировала астигматизм другой. Астигматизмом (впрочем, как любыми другими аберрациями) может обладать и человеческий глаз.

Дисторсия - это аберрация, которая проявляется в нарушении геометрического подобия между предметом и изображением. Она обусловлена неодинаковостью линейного оптического увеличения на разных участках изображения. Положительная дисторсия (увеличение в центе меньше чем по краям) носит название подушкообразной. Отрицательная - бочкообразной.
Кривизна поля изображения заключается в том, что изображение плоского предмета получается резким не в плоскости, а на искривленной поверхности. Если линзы, входящие в состав системы, можно считать тонкими, и система исправлена на астигматизм, то изображение плоскости, перпендикулярной оптической оси системы представляет собой сферу радиуса R, причем 1/R=, где fi- фокусное расстояние i-ой линзы, ni - показатель преломления ее материала. В сложной оптической системе кривизну поля исправляют, сочетая линзы с поверхностями разной кривизны так, чтобы величина 1/R равнялась нулю. Хроматическая аберрация обусловлена зависимостью показателя преломления прозрачных сред от длины волны света (дисперсия света). Вследствие ее проявления изображение предмета, освещенного белым светом, становится окрашенным. Для уменьшения хроматической аберрации в оптических системах применяют детали с различной дисперсией, что приводит к взаимной компенсации этой аберрации…"(с)1987, А.М. Морозов, И.В. Кононов, "Оптические приборы", М., ВШ, 1987

В движении параллакс означает изменение местоположения объекта на каком-либо фоне относительно наблюдателя, который находится на месте. Этот термин обрёл популярность и в интернете. В частности, интересно смотрится сайт, в оформлении которого присутствуют динамичные элементы. Параллакс - это способ оформления страницы в интернете, используемый веб-мастерами для привлечения большого количества посетителей.

Каким бывает параллакс

Параллакс-скроллинг может использоваться вертикально, а также по прямой линии. В качестве примера больше всего подходит Nintendo. Многие из нас с ностальгией вспоминают компьютерные игры, представленные движением главных героев с левой части экрана направо. Также возможно перемещение вниз, осуществляемое по расположенной вертикально прямой. в сети часто используется. Для создания вертикального слайдера можно воспользоваться JavaScript или CSS 3.

Для них как раз свойственен описываемый трёхмерный пространственный эффект. Создателями игр было использовано несколько фоновых слоёв. Они отличаются по текстуре, при этом движение осуществляется с разной скоростью.

Не стоит думать, что параллакс - это исключительно возможность создания эффекта 3D. На странице можно перемещать имеющиеся иконки. Тем более, это выглядит достаточно привлекательно. Особенно удачным вариантом является применение индивидуальной траектории для каждой из них. В этом случае используются различные иконки, перемещаемые по различным траекториям. Подобное оформление привлекает внимание.

Оживающая картинка

Сложно найти сайт без изображений. Качественно выполненные и показательные рисунки привлекают посетителей. Но наибольшее внимание вызывают разного рода динамичные изображения. Действительно, если при посещении сайта отмечается движение, то это привлекает внимание. Существенно увеличивается вероятность возвращения посетителя ресурса к динамичному изображению. А показалось перемещение или нет? Поэтому для привлечения посетителей на сайт стоит изучить такое понятие, как параллакс-эффект.

Примеры сайтов с движущимися изображениями:

  • hvorostovsky.com;
  • www.kagisointeractive.com.

Как показано в примерах, восприятие улучшает раскрывающееся на подпункты меню. Подобный элемент экономит время посетителей, поэтому привлекателен для них.

Библиотека jQuery

Термином jQueryParallax определяют одноимённую библиотеку. Благодаря ей несложно добиться эффекта движения в формате 3D. В библиотеке jQuery трёхмерное восприятие создаётся различными способами. Один из них состоит в горизонтальном одновременном перемещении фоновых объектов с разной скоростью. Для этой библиотеки свойственно наличие большого количества разного рода свойств. И описанное здесь смещение представляет собой лишь небольшую часть её возможностей.

Достаточно привлекательно смотрится сайт, для создания которого были использованы различные современные элементы. Один из них - параллакс. Примеры сайтов могут выглядеть таким образом:

  • www.grabandgo.pt;
  • www.fishy.com.br;
  • www.noleath.com;
  • buysellwebsite.com.

jParallax представлен слоями, перемещающимися при движении мыши. Для динамичных элементов свойственно абсолютное ;). Каждый из них характеризуется собственным размером и движением с индивидуальной скоростью. Это может быть текст или изображение (по желанию создателей ресурса).

Восприятие посетителя сайта

После этого человек обычно обращает внимание на то, что страница оформлена качественно, удобно и со знанием дела. Этот факт обычно вызывает уважение. Бывает, возникает любопытство испытать прочие элементы. В интернете имеется огромное количество тождественных сайтов. Как же сделать свой ресурс особенным?

Если оформление понравится, то посетитель останется на больший период. Таким образом, возрастает вероятность того, что его привлечёт размещённая информация, он проявит заинтересованность. В итоге человек воспользуется предлагаемой услугой, товаром или рекламным предложением.

Любимые старые игры

Понятие «параллакс» должно быть знакомо всем поклонникам приставок 80-90-х годов. Это касается игр:

  1. Mario Bros.
  2. Mortal Kombat.
  3. Streets of Rage.
  4. Moon Patrol.
  5. Turtles in Time.

То есть параллакс - это методика, которая используется достаточно продолжительный период. Указанные игры действительно вспоминаются с некоторой ностальгией. Ведь они словно проникнуты характером того периода.

Изображения на экране созданы с использованием такой техники, как параллакс-скроллинг. Нет ничего удивительного в том, что указанная методика обрела заслуженную популярность. Этот дизайнерский концепт достаточно тепло воспринимается теми, кто играл в 80-90 годы или наблюдал за досугом друзей.

Параллакс-скроллинг

Маркетологи ведущих мировых брендов давно используют разного рода технические достижения. Таким образом, становится возможным заинтересовать даже случайного посетителя сайта.

Параллакс-скроллинг довольно успешно был использован в компании Nike. Разработкой оригинального сайта компании занимались дизайнеры Weiden and Kennedy. Но этот дизайн не сохранился. Ресурс постепенно обновили, в соответствии с тенденциями современности. Activatedrinks.com - пример сайта, дизайн которого напоминает оформление, используемое маркетологами Nike указанного периода.

Динамики не должно быть много

Не стоит забывать, что оформление сайта часто выступает ключевым критерием, которым руководствуется посетитель. Некачественно выполненный ресурс обычно оставляет у пользователя впечатление несерьёзности компании-владельца. А вот сайт с разного рода привлекательными дизайнерскими элементами свидетельствует о стремлении владельцев организации заинтересовать посетителей.

Здесь стоит вспомнить про параллакс. Это замечательный инструмент. Но даже им не стоит сильно увлекаться. Потому что страница, на которой присутствует большое количество разного рода подвижных элементов, достаточно сложна для восприятия. Лучше всего сделать оформление в меру стильным и понятным.

Динамичными должны быть отдельные элементы, которые требуют выделения. Также может присутствовать рисунок, который создаётся с использованием перемещающихся один относительно другого слоёв. Не стоит забывать о том, что пользовательский сайт оформляется, прежде всего, для посетителей. Он не должен представлять собой шедевр веб-мастера, вложившего все свои знания. Ведь подобный подход только осложнит восприятие.

Как создать перемещение на сайте

Как сделать параллакс? Этот вопрос интересует очень многих создателей сайтов. Необязательно знать тонкости написания тегов. Очень удобно использовать специальные ресурсы в интернете. Из большого числа имеющихся предложений можно выделить следующих помощников:

  1. Plax - программа, являющаяся достаточно простой в использовании. Ей свойственно придавать странице подвижность благодаря перемещению мыши.
  2. jQuery Parallax Image Slider - плагин jQuery используется, чтобы создавать слайдеры изображений.
  3. Jquery Image Parallax - подходит для оформления прозрачных рисунков. Благодаря его использованию PNG, GIF приобретают глубину, оживляясь движением.
  4. Curtain.js применяется для создания страницы, оснащённой фиксированными панелями. В этом случае наблюдается эффект открытия штор.
  5. Scrolling Parallax: A jQuery Plugin состоит в создании эффекта параллакса при прокручивании колесика мышки.

Еще несколько полезных плагинов

Как известно, наибольшую ценность имеет информация. И чем большее количество способов достижения желаемого известно, тем ближе вероятность получения правильного результата. Полезные плагины, используемые для создания динамики:

  1. jQuery Scroll Path - применяется для размещения объектов на указанном пути.
  2. Scrollorama - jQuery-плагин. Он используется как инструмент для привлекательного оформления материала. Позволяет за счёт удобного прокручивания «оживить» имеющийся на странице текст.
  3. Scrolldeck - jQuery-плагин. Представляет собой замечательное решение, используемое в качестве презентации для сайтов, оформленных в виде одной страницы.
  4. jParallax представляет перемещение слоёв в зависимости от перемещения указателя мыши.
  5. Stellar.js - плагин, с помощью которого любой элемент оформляется с добавлением эффекта параллакс-скроллинга.

Параллакс с привязкой к курсору

Достаточно эффектно выглядит такой параллакс. Неподвижные на первый взгляд объекты страницы сайта перемещаются при приближении Оно словно оживает и следует за перемещаемым элементом.

Сначала следует остановиться на рисунке. Необходимое изображение помещается в рамку, при этом его края нужно скрыть. Метод очень простой, а полученный таким образом рисунок смотрится достаточно привлекательно.

Параллакс-эффект для сайта - это замечательный способ оформления. Его использование свидетельствует о том, что созданию ресурса уделялось должное внимание. Поэтому стоит обратить внимание на предлагаемые услуги или информацию для прочтения. Такие сайты смотрятся более выигрышно на фоне тождественных, но просто оформленных ресурсов.

Параллакс(от геч. παραλλάξ, от παραλλαγή, «смена, чередование»)-

— изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Параллакс используется в геодезии и астрономии для измерения расстояния до удалённых объектов. На явлении параллакса основано бинокулярное зрение . Так же от слова параллакс происходит известная многим по фантастичнским, и не только, фильмам внесистемная единица измерения расстояния- парсек.

Название происходит от пар аллакс угловой секунды и обозначает расстояние до объекта, годичный параллакс которого равен одной угловой секунде(для примера парсек равен 3.26 светового года или 30.85 трлн. километров!).

Так зачем же необходимо отстраивать параллакс на оптическом прицеле?

А вот зачем-оптическая система прицела устроена таким образом, что изображение удаленной цели проецируется объективом в плоскость, где расположена прицельная сетка. Параллаксом в прицелах называют несовпадение плоскости сформированного объективом изображения цели с плоскостью прицельной сетки. Это может быть как передняя фокальная плоскость объектива(FFP), так и задняя фокальная плоскость окуляра(SFP). Природа параллакса - изменение так называемого телесного угла при изменении расстояния до цели. Если цель приблизить, то угол увеличивается и тем самым увеличивает задний отрезок объектива, разнося фокальную плоскость объектива и сетки по разным параллельным плоскостям. Это и вызывает параллакс! И если параллакс не отстроить, он будет вносить погрешность при стрельбе в зависимости от положения глаза стрелка относительно оси прицела!

Заметить параллакс можно следующим образом, если прицел имеет прицельную сетку в фокальной плоскости объектива, то при смещении глаза перпендикулярно оси прицела можно заметить, что изображение цели ‘плывет’ относительно центра сетки и прицельная точка как бы ‘съезжает’ с цели.

В большинстве современных прицелов сетка расположена в задней фокальной плоскости окуляра и в таких прицелах параллакс проявляется размытостью прицельной сетки и невозможностью видеть одновременно, и с одинаковой четкостью изображение цели и прицельной сетки, если цель находится не на бесконечно-удаленной дистанции.

Чтобы видеть одновременно изображение цели и прицельной сетки с одинаково высокой четкостью на небесконечно удаленной дистанции, нужно вносить поправку в настройки оптической системы прицела для каждой конкретной дальности стрельбы, меняя межфокальное расстояние объектива и окуляра.

Для устранения параллакса в прицелах служит механизм фокусировки объектива, позволяющий поместить изображение от объектива точно в плоскость прицельной сетки.

Обычно для этого перемещают всю систему линз объектива или только внутреннюю его часть.

Различают два вида устройства отстройки параллакса - AO(AdjustableObjective) и SF(SideFocusing).

При AO кольцо отстройки от параллакса расположено прямо на объективе прицела. На обойме объектива наносится шкала, обозначающая дистанцию фокусировки.

Параллакс устраняется вращением кольца на объективе и таким образом производится настройка объектива на нужную дистанцию стрельбы. Этот способ более распространен ввиду его простоты реализации и дешевизны. Минусом такого способа является невозможность крутить кольцо отстройки параллакса не меня положения изготовки для стрельбы.

При SF механизм отстройки параллакса размещен сбоку прицела и иногда снабжается большим съемным колесом для удобства и плавности отстройки параллакса.

Параллакс - это видимое движения цели относительно сетки при движении головой вверх и вниз, когда вы глядите в окуляр прицела. Это происходит, когда цель не попадает на той же плоскости, что и сетка. Для устранения параллакса, некоторые прицелы имеют регулируемый объектив или колесо сбоку.

Стрелок регулирует передний или боковой механизм, смотря одновременно и на сетку и на цель. Когда и сетка и мишень в резком фокусе, в прицеле, на его максимальном увеличении, прицел, как говорят, свободен от параллакса. Это есть определение параллакса с огнестрельной точки зрения, где большинство выстрелов ведется на дистанциях более 100 метров и ГРИП (глубина резко изображаемого пространства) велик.

Стрельба из пневматического оружия- другое дело. При использовании прицела существенного увеличения при относительно близком расстоянии (до 75 метров) изображение будет не в фокусе (размыто) в любом диапазоне, кроме того, на который он в настоящее время установлен. Это означает, что, чтобы иметь приемлемую картинку, «объективный» или боковой фокус должен быть отрегулирован для каждого из расстояний, на которое вы хотите стрелять.

Несколько лет назад было обнаружено, что побочный эффект коррекции параллакса/ фокусировки был таков, что если прицел имеет достаточное (более 24x) увеличение, то это можно было использовать для типичных дистанций пневматического оружия, при малой глубине резкости это сделало возможным точную оценку расстояния. Маркируя колесо отстройки параллакса в расстояниях, на которых изображение оказывалось в фокусе, что теперь стало простой «коррекцией/отстройкой параллакса», в филд-таргете получили элементарный, но очень точный дальномер.

Типы регулировки параллакса

Есть 3 типа: передний (объектив), сбоку и сзади. Задний - фокус регулируется с помощью кольца близким по размеру и местоположению к кольцу увеличения (трансфокатора – прим.перев.). Прицелы с задней фокусировкой являются редкими и на сегодняшний день ни один не нашел свое применение в филд-таргете, поэтому они не будут рассматриваться в дальнейшем. Остается передний фокус и боковой фокус.

I) Регулируемый объектив (передний фокус)

Это относительно простой механически и, как правило, менее дорогой чем боковой, механизм фокусировки. Есть дорогие исключения, такие как Leupold, Burris, Bausch&Lomb, и эти модели пользуются популярностью в филд-таргете из-за их исключительных оптических качеств. Однако, существует эргономический недостаток использования параллакса на объективе и это происходит из-за того, что нужно дотянуться к передней части прицела, чтобы настроить его, в то время как необходимо производить прицеливание.

Это является особой проблемой в стойке и стрельбе с колена. Некоторые модели, такие как Burris Signature, имеют «сбрасываемое кольцо калибровки». Линейка прицелов Leupold включает прицелы, где объектив не вращается; линза перемещается только тогда, когда вы используете рифленое кольцо. В большинстве прицелов с передней фокусировкой весь корпус передней линзы вращается.

Это может быть очень трудно - вращать плавно и может является следствием того, что измерение дистанции станет вторично, так как прицел не был разработан с учетом такой функции. Следовательно, это более простые прицелы, которые не содержит слишком много оптических элементов, поэтому вероятность возможных ошибок и неисправности является очень низкой.

Существуют различные приемы, чтобы сделать чтение дистанций легче, такие как некие хомуты вокруг объектива или призмы, чтобы смотреть шкалу из стрелковой позиции. Стрелок-левша может найти этот тип прицелов более удобными, чем прицелы с боковым колесом.


II) Сайд-фокус

Прицелы с боковыми колесами в филд-таргете в настоящее время, стали скорее нормой, чем исключением. Хотя, обычно дорогие, и ограниченные в модельном ряде, они предлагают одно большое преимущество над моделями с передним «параллаксом»: легкость доступа к боковому колесу вместо передней части прицела. Отметки дистанции на колесе могут быть прочитаны без акробатических упражнений, то есть нарушения изготовки.

Боковые колеса, как правило, легче поворачивать, чем объектив, следовательно, возможна более точная регулировка. Однако, этот механизм гораздо более уязвим. Если колесо имеет люфт, вы всегда должны измерять дистанцию в одном и том же направлении для компенсации этого люфта.

Прицелы с боковыми колесами, как правило, поставляется только с ручкой, которая слишком мала для организации 1-ярдового и 5-ярдового шага шкалы, необходимого для филд-таргета. Это маленькое колесо работает по прямому назначению - в качестве устройства коррекции параллакса, а не как дальномер.

Вместо устанавливается большое колесо поверх существующего. Большие колеса, как правило, сделаны из алюминия, и крепятся на место резьбовыми штифтами или винтами. Оригинальные ручки, как правило, 20-30 мм в диаметре. «Кастомные» колеса, как правило варьируются в размерах от 3 до 6 дюймов в диаметре.

Также может оказаться, что необходимо изготовить указатель на колесе, чтобы заменить стоковый. Тонкого куска пластика или металла, зажатого между верхним и нижним полукольцами и располагающегося по краю колеса, должно быть достаточно.


Вы можете увидеть некоторые действительно огромные колеса по всему миру, но их не стоит ставить больше, чем 6-7 дюйма, т.к это более уязвимо и разрешение не улучшится. Вы будете иметь большой шаг шкалы, но и ошибки будут больше тоже. Желательно монтировать метку на самом прицеле (например, с помощью третьего кольца крепления, или с помощью уже имеющегося указателя на прицеле), а не монтажа чего-либо между двумя кольцами кронштейна оптического прицела. Таким образом, вы не должны калибровать параллакса снова, если у вас есть причина, чтобы снять прицел.

Калибровка «отстройки параллакса» в качестве дальномера

Это самая сложная часть всей процедуры работы с прицелом. В процессе вас может постигнуть разочарование и навалиться усталость, а длительное зрительное напряжение может стать причиной потерянного времени и усилий. Во время соревнований, все, что вы делаете в процессе выстрела будет впустую, если вы не разметите правильную дистанцию, так что тщательность действий по разметке параллакса обязательно принесет дивиденды.

Вы должны иметь доступ к 50-метровому рубежу, рулетке и мишеням. Особенно важно то, что вы используете правильный тип мишени, чтобы настроить маркировку дистанций. Стандартные падающие ФТ-мишени являются лучшими, потому что они будут вашим единственным источником информации для оценки расстояний во время соревнований. Возьмите две таких мишени и покрасьте из баллончика одну из них черным цветом и белым - убойную зону. Покрасьте вторую белым цветом и черным - убойную зону.

Разместите мишени на безопасном расстоянии и выстрелите примерно десять раз в каждую. Это обеспечит контраст между краской на мишени и серым металлом самой мишени. Взяв нейлоновый шнур, свяжите несколько крупных узлов через металлическое кольцо на лицевой панели. Отдельные петли и намотки на шнуре могут оказать неоценимую помощь в решении проблемы точной фокусировки.

Может оказаться необходимым обернуть кусок ленты вокруг колеса отстройки параллакса, чтобы обеспечить поверхность, на которой можно записать числа. Остроконечные перманентные маркеры – лучший вариант для записи на ленту. Кроме того, можно использовать номера-наклейки для нанесения разметки непосредственно на полированный алюминий. Сейчас настало время, чтобы решить, какой метод маркировки вы будете использовать.

Это печальный факт, что чем больше расстояние, тем шаг между отметками уменьшается, сливаясь в одну после 75 ярдов. В среднем расстояние между 20 и 25 ярдов на 5-дюймовом боковом колесе составляет около 25 мм. Между 50 и 55 ярдами это уменьшается до, примерно, 5 мм. Следовательно, большие дальности являются наиболее трудноопределяемыми и повторяемыми. Отметка в 20 ярдов является хорошим местом для начала. Это выше нижнего предела фокуса прицела, но не настолько далеко, чтобы оказаться сложным.

Поместите обе цели ровно на 20 ярдов от передней линзы прицела . Важно, что именно передняя линза используется в качестве опорной точки для всех ваших измерений в противном случае это может привести к неточным показаниям дистанций. Выполните следующие действия:

1. Сосредоточьте свой глаз в первую очередь на сетке прицела. Поверните колесо до тех пор, пока цель не окажется приблизительно в фокусе.
2. Повторите, но попытайтесь уменьшить амплитуду работы колесом, пока изображение цели не окажется четким и резким.
3. Используя канцелярские принадлежности, сделайте крошечную (!) отметку на колесе рядом с «указателем».
4. Повторяя шаги 2 и 3, Вы ищете метки, которые будут в том же месте каждый раз после замера. Если это так, вы можете отмаркировать ее цифрой и сделать вашим постоянным значением для этой дистанции. Если оказывается невозможным и вы все-таки получите несколько меток, вы можете просто пойти на компромисс между крайними отметками или принять за рабочую точку то место, где они самые плотные и надписать значение.
5. Повторите шаги 1-4 с белой мишенью. Отметки могут оказаться в том же месте, но не могут и не оказаться. Запишите разницу при переходе от черной к белой цели. Это важно- практиковать дальномер в различных условиях освещения. Это важно, потому что человеческий глаз аккомодируется гораздо быстрее, если изображение отличается высокой детализацией и достаточно простое. При вращении колеса, ваш мозг пытается немного исправить изображение из нерезкого до резкого, прежде чем это станет ДЕЙСТВИТЕЛЬНО резким. Эта разница зависит от условий освещения, вашего возраста, физической формы в данный момент и т.д. Вы можете уменьшить этот эффект, если вращать колесо всегда с одной и той же скоростью, не слишком быстро, но не «миллиметр за миллиметром». Изображение фокусироваться более определенно, если вы делаете бОльшие движения, например, по 5-10 ярдов и не только по 1-2 ярдов.

Как отмечалось ранее, важно не слишком старается. Как только вы концентрируетесь на цели, ваши собственные глаза будут пытаться компенсировать ошибки параллакса и сфокусируют цель, в то время как перекрестье будет не в фокусе (рис.1). Вы не заметите этого, пока не перестанете смотреть на цель, в какой момент вы заметите, что перекрестие резкое и цель вдруг размыты и не в фокусе (рис.2).

Вот почему вы должны сосредоточить свои глаза в первую очередь на перекрестье сетки и просто взять небольшой взгляд на цель или просто используйте ваше периферийное зрение (речь про то, что надо бы держать второй глаз открытым – прим.перев.)для наблюдения за целью, сохраняя при этом основное внимание на перекрестье. Таким образом, цель будет видна резко в то время как сетка тоже остается резкой (рис.3).


Рис.1

Рис.2

Рис.3

С завершением настройки параллакса на 20-ярдов, переместитесь на 5 ярдов дальше. Повторите эту процедуру для каждых 5 ярд от 20 до 55 ярдов, постоянно сверяясь с другими дистанциями, чтобы убедиться, что ничего не изменилось. Если все начинает меняться, сделайте перерыв и попробуйте еще раз.

После того как 20-50 ярдов были завершены, устанавливают короткие расстояния с точностью на ваш выбор. Как отмечалось ранее, установка 17,5 ярдов для диапазона от 15 до 20, а затем 1-ярдового шага вниз от 15 ярдов должно оказаться более чем достаточно. Когда вы достигнете дистанций ближнего предела измерений вашего прицела, сверяйтесь с рулеткой. Возможно, вам придется двигать мишень лишь на шесть дюймов, чтобы определить это расстояние. Это может оказаться 8.5 ярдов или что-то подобное.

Большинство прицелов, что используются в FT, не могут измерять дистанции от 8 ярдов, лишь с 10 или 15 ярдов. Если вы выкрутите трансфокатор в меньшую сторону, вы увидите эти близкие мишени более резко, но никогда по-настоящему четко. «Фокус-адаптер» может помочь этой проблеме, но многие стрелки могут жить с ней в любом случае. Независимо от расстояния, установите вертикальную поправку для этой дистанции, стреляя в одну из картонных мишеней по методике, описанной ранее. Теперь у вас есть прицел, которая будет работать как дальномер для всех расстояний отмеченной траектории.

Теперь для теста. Понадобится друг или же коллега. Попросите, чтобы они поставили несколько мишеней на различных дистанциях, каждая из которых была измерен с рулеткой. Они должны будут записать эти дистанции. Затем измерьте дистанцию до каждой из целей, в свою очередь, называя значение каждой Вашему другу. Он будет писать названные величины рядом с измеренными дистанциями.

Это интересное упражнение, потому что оно проверяет ваши данные в реальной жизни. На измеренной заранее дистанции ваш мозг может обмануть вас, потому что вы знаете, как далеко находится цель. Тест имитирует условия соревнований, потому что у вас нет абсолютно никакого способа узнать наверняка расстояние до цели, кроме вашего прицела. Существует поговорка в филд-таргете и это очень верно: Trust Your Scope - Доверяй Своему Прицелу.

* * * * * * * * * * * * * * * * * * * * * * * * *

Если вы следовали данному руководству до этого места, вы настроили вашу винтовку и прицел и способны выиграть любое соревнование. Остальное, как говорится, зависит от вас. Добро пожаловать в Филд Таргет. Наслаждайтесь!

Сдвиг параллакса

Сдвиг параллакса - хорошо известное явление, более или менее каждый прицел страдает от него. Основной причиной этого является изменение температуры, но и от высоты над уровнем моря. Или некоторые светофильтры могут повлиять на него. Если мы хотим сравнить поведение разных прицелов, связанное с ошибками дальномера, то всегда рекомендуется рассматривать дальномерную ошибку на 55 ярдов при 10 градусах разницы температур. Эта величина была 0,5-4 ярда у прицелов, что я испытал.

Есть несколько различных способов борьбы со сдвигом параллакса, от соответствующего смещения масштаба и наклонных меток расстояния до нескольких (или регулируемых) указателей. Но дело в том, что вы должны узнать ваш прицел и его дальномер при различных температурах.


К сожалению, есть только один способ узнать про необходимые исправления: вы должны тестировать прицел в разные времена года и время дня, расставив мишени, через каждые 5 ярдов и промерять их много раз, очень точно. Важно, чтобы прицел оставался в тени и находился, по крайней мере полчаса, на открытом воздухе перед началом замеров.


После дюжины экспериментов вы увидите, как ваш прицел реагирует на температуру. Сдвиг параллакса может быть непрерывным при изменении температуры, но не может быть «почти ничего, а потом вдруг "прыжок"». Если вы уже знаете, как ваш прицел работает, вы будете также знать, сколько и как компенсировать, чтобы получить правильные результаты измерения дальности.

Изолировать прицел совершенно бесполезно, потому что это может защитить только от прямых солнечных лучей, но он по-прежнему подвергается нагреву от окружающей среды и произойдет сдвиг параллакса. Кроме того, водяное охлаждение не является хорошей идеей:-) Мы можем сделать две вещи, которые действительно полезны: мониторинг температуры окружающей среды или еще лучше если самого прицела (см. рисунок ниже). И, конечно, держать прицел в тени все время. Выстрел занимает только 2-3 минуты, так что прицел не может получить слишком много тепла и у него есть 10-15 минут, чтобы вернуться к температуре воздуха.

Инструкция по Установке Прицела БФТА
- Обновлено Маэстро

Вы едете в поезде и смотрите в окно… Мелькают столбы, стоящие вдоль рельсов. Медленнее убегают назад постройки, расположенные в нескольких десятках метров от железнодорожного полотна. И уже совсем медленно, нехотя отстают от поезда домики, рощи, которые вы видите вдали, где‑то у горизонта…

Почему это так происходит? На этот вопрос дает ответ рис. 1. В то время как направление на телеграфный столб при перемещении наблюдателя из первого положения во второе изменяется на большой угол P 1 направление на удаленное дерево изменится на значительно меньший угол P 2 . Скорость изменения направления на предмет при движении наблюдателя тем меньше, чем дальше от наблюдателя находится предмет. А из этого следует, что величиной углового смещения предмета, которое называют параллактическим смещением или просто параллаксом, можно характеризовать расстояние до предмета, что широко используется в астрономии.

Разумеется, обнаружить параллактическое смещение звезды, двигаясь по земной поверхности, нельзя: звезды слишком далеки, и параллаксы при таких перемещениях находятся далеко за пределами возможности их измерения. Но если попытаться измерить параллактические смещения звезд при перемещении Земли из одной точки орбиты в противоположную (т. е. повторить наблюдения с интервалом в полгода, рис. 2), то вполне можно рассчитывать на успех. Во всяком случае таким путем измерены параллаксы нескольких тысяч ближайших к нам звезд.

Параллактические смещения, измеренные с использованием годичного движения Земли по орбите, называют годичными параллаксами. Годичный параллакс звезды - это угол (π), на который изменится направление на звезду, если воображаемый наблюдатель переместится из центра Солнечной системы на земную орбиту (точнее - на среднее расстояние Земли от Солнца) в направлении, перпендикулярном направлению на звезду. Легко понять из рис. 2, что годичный параллакс можно определить и как угол, под которым со звезды видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения.

С годичным параллаксом связана и основная единица длины, принятая в астрономии для измерения расстояний между звездами и галактиками, - парсек (см. Единицы расстояний). Параллаксы некоторых ближайших звезд приведены в таблице.

Для более близких небесных тел - Солнца, Луны, планет, комет и других тел Солнечной системы - параллактическое смещение можно обнаружить и при перемещении наблюдателя в пространстве вследствие суточного вращения Земли (рис. 3). В этом случае параллакс вычисляют для воображаемого наблюдателя, перемещаемого из центра Земли в точку экватора, в которой светило находится на горизонте. Для определения расстояния до светила вычисляют угол, под которым виден со светила экваториальный радиус Земли, перпендикулярный лучу зрения. Такой параллакс называют суточным горизонтальным экваториальным параллаксом или просто суточным параллаксом. Суточный параллакс Солнца на среднем расстоянии от Земли равен 8,794″; средний суточный параллакс Луны равен 3422,6″, или 57,04′.

Как уже говорилось, годичные параллаксы непосредственным измерением параллактического смещения (так называемые тригонометрические параллаксы) можно определить только у ближайших звезд, расположенных не далее нескольких сотен парсек.

Однако изучение звезд, для которых тригонометрические параллаксы были измерены, позволило обнаружить статистическую зависимость между видом спектра звезды (её спектральным классом) и абсолютной звездной величиной (см. «Спектр-светимость» диаграмма). Распространив эту зависимость также и на звезды, для которых тригонометрический параллакс неизвестен, получили возможность по виду спектра оценивать абсолютные звездные величины звезд, а затем, сравнивая их с видимыми звездными величинами, астрономы стали оценивать и расстояния до звезд (параллаксы). Параллаксы, определенные таким методом, называются спектральными параллаксами (см. Спектральная классификация звезд).

Существует еще один метод определения расстояний (и параллаксов) до звезд, а также звездных скоплений и галактик - по переменным звездам типа цефеид (этот метод описан в статье Цефеиды) ; такие параллаксы иногда называют цефеидными параллаксами.

Новое на сайте

>

Самое популярное