Домой Интересное Нагревание атмосферного воздуха. §33. Нагревание воздуха и его температура Выбор диаметра труб для теплоснабжения калорифера

Нагревание атмосферного воздуха. §33. Нагревание воздуха и его температура Выбор диаметра труб для теплоснабжения калорифера

Изменение рециркуляции дымовых газов. Рециркуляция га­зов широко применяется для расширения диапазона регулирова­ния температуры перегретого пара и позволяет поддержать тем­пературу перегрева пара и при малых нагрузках котлоагрегата. В последнее время рециркуляция дымовых газов получает так­же распространение как метод снижения образования NО х. Приме­няется также рециркуляция дымовых газов в воздушный поток перед горелками, что является более эффективным с точки зре­ния подавления образования N0 x .

Ввод относительно холодных рециркулируемых газов в ниж­нюю часть топки приводит к уменьшению тепловосприятия ра­диационных поверхностей нагрева и к возрастанию температу­ры газов па выходе из топки и в конвективных газоходах, в том числе температуры уходящих газов. Увеличение общего расхода дымовых газов на участке газового тракта до отбора газов на рециркуляцию способствует повышению коэффициентов тепло­передачи и тепловосприятия конвективных поверхностей нагрева.

Рис. 2.29. Изменение температуры пара (кривая 1), темпе­ратуры горячего воздуха (кривая 2) и потерь с уходящими газами (кривая 3) в зависимости от доли рециркуляции ды­мовых газов г.

На рис. 2.29 приведены характеристики котлоагрегата ТП-230-2 при изменении доли рециркуляции газов в нижнюю часть топки. Здесь доля рециркуляции

где V рц - объем газов, отбираемых па рециркуляцию; V r - объем газов в месте отбора на рециркуляцию без учета V рц. Как видно, увеличение доли рециркуляции на каждые 10% приводит к повы­шению температуры уходящих газов на 3-4°С, Vr - на 0,2%, температуры пара - на 15° С, причем характер зависимости почти линейный. Эти соотношения не являются однозначными для всех котлоагрегатов. Их величина зависит от температуры рециркулируемых газов (места забора газов) и метода ввода их. Сброс рециркулируемых газов в верхнюю часть топки не ока­зывает влияния на работу топки, но приводит к значительному снижению температуры газов в области пароперегревателя и как следствие к снижению температуры перегретого пара, хотя объем продуктов сгорания увеличивается. Сброс газов в верхнюю часть топки может быть использован для защиты пароперегревателя от воздействия недопустимо высокой температуры газов и уменьшения шлакования пароперегревателя.

Разумеется, применение рециркуляции газов приводит к сни­жению не только к.п.д. брутто, но и к.п.д. нетто котлоагрегата, так как вызывает увеличение расхода электроэнергии на соб­ственные нужды.

Рис. 2.30. Зависимость потерь тепла с механическим недожегом от температуры горячего воздуха.

Изменение температуры горячего воздуха. Изменение тем­пературы горячего воздуха является результатом изменения режима работы воздухоподогревателя вследствие влияния таких факторов, как изменение температурного напора, коэффициента теплопередачи, расхода газов или воздуха. Повышение темпера­туры горячего воздуха увеличивает, хотя и незначительно, уро­вень тепловыделения в топке. Величина температуры горячего воздуха оказывает заметное влияние на характеристики котло-агрегатов, работающих на топливе с малым выходом летучих. Понижение ^ г.в в этом случае ухудшает условия воспламенения топлива, режим сушки и размола топлива, приводит к понижению температуры аэросмеси на входе в горелки, что может вызвать рост потерь с механическим недожогом (см. рис. 2.30).

. Изменение температуры предварительного подогрева воз­духа. Предварительный подогрев воздуха перед воздухоподогре­вателем применяется для повышения температуры стенки его поверхностей нагрева с целью снижения коррозионного воздей­ствия па них дымовых газов, в особенности при сжигании высокосернистых топлив. Согласно ПТЭ , при сжигании сернистого мазута температура воздуха перед трубчатыми воздухоподогревателями должна быть не ниже 110° С, а перед регенеративными - не ниже 70 е С.

Предварительный подогрев воздуха может осуществляться за счет рециркуляции горячего воздуха на вход дутьевых венти­ляторов, однако при этом происходит снижение экономичности котлоагрегата за счет увеличения расхода электроэнергии на дутье и роста температуры уходящих газов. Поэтому подогрев воздуха выше 50°С целесообразно осуществлять в калориферах, работающих на отборном паре или горячей воде.

Предварительный подогрев воздуха влечет за собой уменьше­ние тепловосприятия воздухоподогревателя вследствие снижения температурного напора, температура уходящих газов и потеря тепла при этом повышаются. Предварительный подогрев воздуха требует также дополнительных затрат электроэнергии на подачу воздуха в воздухоподогреватель. В зависимости от уровня и способа предварительного подогрева воздуха на каждые 10° С предварительного подогрева воздуха к.п.д. брутто изменяется примерно на 0,15-0,25%, а температура уходящих газов - на 3-4,5° С.

Так как доля тепла, отбираемого для предварительного подо­грева воздуха, по отношению к теплопроизводительности котлоагрегатов довольно велика (2-3,5%), выбор оптимальной схе­мы подогрева воздуха имеет большое значение.



Холодный воздух

Рис. 2.31. Схема двухступенчатого подогрева воздуха в калориферах сетевой водой и отборным паром:

1 - сетевые подогреватели; 2 - первая ступень подогрева воздуха сетевой водой отопительной системы; 3 - вторая ступень подогрева воздуха пзром; 4 - насос подачи обратной сетевой воды на калориферы; 5 - сетевая вода для подогре­ва воздуха (схема для летнего периода); 6 - сетевая вода для подогрева воздуха (схема для зимнего периода).

Когда солнце греет сильнее – когда оно стоит выше над головой или когда ниже?

Солнце греет сильнее, когда стоит выше. Солнечные лучи в этом случае падают под прямым, или близким к прямому углом.

Какие виды вращения Земли вам известны?

Земля вращается вокруг своей оси и вокруг Солнца.

Почему на Земле происходит смена дня и ночи?

Смена дня и ночи – результат осевого вращения Земли.

Определите, как отличается угол падения солнечных лучей 22 июня и 22 декабря на параллелях 23,5° с. ш. и ю. ш.; на параллелях 66,5° с. ш. и ю. ш.

22 июня угол падения солнечных лучей на параллели 23,50 с.ш. 900, ю.ш. – 430. На параллели 66,50 с.ш. – 470, 66,50 ю.ш. – скользящий угол.

22 декабря угол падения солнечных лучей на параллели 23,50 с.ш. 430, ю.ш. – 900. На параллели 66,50 с.ш. – скользящий угол, 66,50 ю.ш. – 470.

Подумайте, почему самые теплые и холодные месяцы - не июнь и декабрь, когда солнечные лучи имеют наибольший и наименьший углы падения на земную поверхность.

Атмосферный воздух нагревается от земной поверхности. Поэтому в июне происходит нагревание земной поверхности, а температура достигает максимума в июле. Тоже происходит зимой. В декабре выхолаживается земная поверхность. В январе остывает воздух.

Определите:

среднюю суточную температуру по показателям четырех измерений за сутки:-8°С, -4°С,+3°С,+1°С.

Среднесуточная температура -20С.

среднюю годовую температуру Москвы, используя данные таблицы.

Среднегодовая температура 50С.

Определите суточную амплитуду температур для показателей термометров на рисунке 110, в.

Амплитуда температур на рисунке в 180С.

Определите, на сколько градусов годовая амплитуда в Красноярске больше, чем в Санкт-Петербурге, если средняя температура июля в Красноярске +19°С, а января- -17°С; в Санкт-Петербурге +18°С и -8°С соответственно.

Амплитуда температур в Красноярске 360С.

Амплитуда температур в Санкт-Петербурге 260С.

Амплитуда температур в Красноярске больше на 100С.

Вопросы и задания

1. Как происходит нагревание воздуха атмосферы?

Пропуская солнечные лучи, атмосфера от них почти не нагревается. Нагревается же земная поверхность, и сама становится источником тепла. Именно от нее нагревается атмосферный воздух.

2. Насколько градусов уменьшается температура в тропосфере при подъеме на каждые 100 м?

При подъеме вверх па каждый километр температура воздуха понижается на 6 0С. Значит, на 0,60 на каждые 100 м.

3. Вычислите температуру воздуха за боротом самолета, если высота полета 7 км, а температура у поверхности Земли +200С.

Температура при подъеме на 7 км понизится на 420. Значит, температура за бортом самолета составит -220.

4. Можно ли в горах на высоте 2500 м встретить летом ледник, если у подножий гор температура +250С.

Температура на высоте 2500 м составит +100С. Ледник на высоте 2500 м не встретится.

5. Как и почему изменяется температура воздуха в течение суток?

Днем солнечные лучи освещают земную поверхность и прогревают ее, от нее нагревается и воздух. Ночью поступление солнечной энергии прекращается, и поверхность вместе с воздухом постепенно остывает. Солнце наиболее высоко стоит над горизонтом в полдень. В это время поступает больше всего солнечной энергии. Однако самая высокая температура наблюдается через 2-3 ч после полудня, так как на передачу тепла от поверхности Земли к тропосфере требуется время. Самая низкая температура бывает перед восходом солнца.

6. От чего зависит разница в нагревании поверхности Земли в течении года?

В течение года на одной и той же территории солнечные лучи падают на поверхность по-разному. Когда угол падения лучей более отвесный, поверхность получает больше солнечной энергии, температура воздуха повышается и наступает лето. Когда солнечные лучи наклонены сильнее, поверхность нагревается слабо. Температура воздуха в это время понижается, и наступает зима. Самый теплый месяц в Северном полушарии - июль, а самый холодный - январь. В Южном полушарии - наоборот: самый холодный месяц года - июль, а самый теплый - январь.

— приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных установках.

По виду теплоносителя калориферы могут быть огневыми, водяными, паровыми и электрическими.

Наибольшее распространение в настоящее время имеют водяные и паровые калориферы, которые подразделяют на гладкотрубные и реб-ристые; последние, в свою очередь, подразделяют на пластинчатые и спирально-навивные.

Различают одноходовые и многоходовые калориферы. В одноходовых теплоноситель движется по трубкам в одном направлении, а в многоходовых несколько раз меняет направление движения вследствие на-личия в коллекторных крышках перегородок (рис. XII.1).

Калориферы выполняют двух моделей: средней (С) и большой (Б).

Расход тепла для нагревания воздуха определяется по формулам:

где Q" — расход тепла для нагревания воздуха, кДж/ч (ккал/ч); Q — то же, Вт; 0,278 — коэффициент перевода кДж/ч в Вт; G — массовое количество нагревае-мого воздуха, кг/ч, равное Lp [здесь L — объемное количество нагреваемого воздуха, м 3 /ч; р — плотность воздуха (при температуре t K), кг/м 3 ]; с — удельная теплоемкость воздуха, равная 1 кДж/(кг-К) ; t к — температура воздуха после калорифера, °С; t н — температура воздуха до калорифера, °С.

Для калориферов первой ступени подогрева температура tн равна температуре наружного воздуха.

Температура наружного воздуха принимается равной расчетной вентиляционной (параметры климата категории А) при проектировании общеобменной вентиляции, предназначенной для борьбы с избыт-ками влаги, тепла и газами, ПДК которых больше 100 мг/м3. При про-ектировании общеобменной вентиляции, предназначенной для борьбы с газами, ПДК которых меньше 100 мг/м3, а также при проектировании приточной вентиляции для компенсации воздуха, удаляемого через местные отсосы, технологические вытяжки или системы пневматического транспорта, температура наружного воздуха принимается равной расчетной наружной температуре tн для проектирования отопления (параметры климата категории Б).

В помещение без теплоизбытков следует подавать приточный воздух с температурой, равной температуре внутреннего воздуха tВ для данного помещения. При наличии теплоизбытков приточный воздух подают с пониженной температурой (на 5-8° С). Приточный воздух с температурой ниже 10° С не рекомендуется подавать в помещение даже при наличии значительных тепловыделений из-за возможности возникновения простудных заболеваний. Исключение составляют случаи применения специальных анемостатов.


Необходимая площадь поверхности нагрева калориферов Fк м2, определяется по формуле:

где Q — расход тепла для нагревания воздуха, Вт (ккал/ч); К — коэффициент теплопередачи калорифера, Вт/(м 2 -К) [ккал/(ч-м 2 -°С)]; t ср.Т. — средняя температура теплоносителя, 0 С; t ср.в. — средняя температура нагреваемого воздуха, проходящего через калорифер, °С, равная (t н + t к)/2.

Если теплоносителем служит пар, то средняя температура теплоносителя tср.Т. равна температуре насыщения при соответствующем давлении пара.

Для воды температура tср.Т. определяется как среднее арифметическое температуры горячей и обратной воды:

Коэффициент запаса 1,1-1,2 учитывает потери тепла на охлаждение воздуха в воздуховодах.

Коэффициент теплопередачи калориферов К зависит от вида теплоносителя, массовой скорости движения воздуха vp через калорифер, геометрических размеров и конструктивных особенностей калориферов, скорости движения воды по трубкам калорифера.

Под массовой скоростью понимают массу воздуха, кг, проходящего за 1 с через 1 м2 живого сечения калорифера. Массовая скорость vp, кг/(см2), определяется по формуле

По площади живого сечения fЖ и поверхности нагрева FК подбирают модель, марку и число калориферов. После выбора калориферов уточняют по действительной площади живого сечения калорифера fД данной модели массовую скорость движения воздуха:

где А, А 1 , n, n 1 и т — коэффициенты и показатели степеней, зависящие от конструкции калорифера

Скорость движения воды в трубках калорифера ω, м/с, определяется по формуле:

где Q"— расход тепла для нагревания воздуха, кДж/ч (ккал/ч); рв — плотность воды, равная 1000 кг/м3, св — удельная теплоемкость воды, равная 4,19 кДж/(кг-К) ; fTP — площадь живого сечения для прохода теплоносителя, м2, tг — температура горячей воды в подающей магистрали, °С; t 0 — температура обратной воды, 0С.

На теплоотдачу калориферов влияет схема обвязки их трубопроводами. При параллельной схеме присоединения трубопроводов через отдельный калорифер проходит только часть теплоносителя, а при последовательной схеме через каждый калорифер проходит весь расход теплоносителя.

Сопротивление калориферов проходу воздуха р, Па, выражается следующей формулой:

где В и z — коэффициент и показатель степени, которые зависят от конструкции калорифера.

Сопротивление последовательно расположенных калориферов равно:

где т — число последовательно расположенных калориферов. Расчет заканчивается проверкой теплопроизводительности (теплоотдачи) калориферов по формуле

где QK - теплоотдача калориферов, Вт (ккал/ч); QK - то же, кДж/ч, 3,6 - коэффициент перевода Вт в кДж/ч FK — площадь поверхности нагрева калориферов, м2, принятая в результате расчета калориферов данного типа; К - коэффициент теплопередачи калориферов, Вт/(м2-К) [ккал/(ч-м2-°С)]; tср.в - средняя температура нагреваемого воздуха, проходящего через калорифер, °С; tср. Т - средняя температура теплоносителя, °С.

При подборе калориферов запас на расчетную площадь поверхно-сти нагрева принимается в пределах 15 - 20 %, на сопротивление про-ходу воздуха - 10 % и на сопротивление движению воды - 20 %.

1

Согласно оценкам Международного энергетического агентства, приоритетным направлением снижения выбросов диоксида углерода автомобилями является повышение их топливной экономичности. Задача снижения выбросов СО2 путем повышения топливной экономичности автотранспорта является для мирового сообщества одной из приоритетных, учитывая необходимость рационального использования не возобновляемых источников энергии. С этой целью постоянно ужесточаются международные стандарты, лимитирующие показатели пуска и эксплуатации двигателя в условиях низких и даже высоких температур окружающей среды. В статье рассмотрен вопрос топливной экономичности двигателей внутреннего сгорания в зависимости от температуры, давления, влажности окружающего воздуха. Приведены результаты исследования по поддержанию постоянной температуры во впускном коллекторе ДВС с целью экономии топлива и определению оптимальной мощности нагревательного элемента.

мощность нагревательного элемента

температура окружающего воздуха

подогрев воздуха

экономия топлива

оптимальная температура воздуха во впускном коллекторе

1. Автомобильные двигатели. В.М. Архангельский [и др.]; отв. ред. М.С. Ховах. М.: Машиностроение, 1977. 591 с.

2. Карнаухов В.Н., Карнаухова И.В. Определение коэффициента наполнения в ДВС // Транспортные и транспортно-технологические системы, материалы Международной научно-технической конференции, Тюмень, 16 апреля 2014г. Тюмень: Изд-во ТюмГНГУ, 2014.

3. Ленин И.М. Теория автомобильных и тракторных двигателей. М.: Высшая школа, 1976. 364 с.

4. Ютт В.Е. Электрооборудование автомобилей. М: Изд-во Горячая линия-Телеком, 2009. 440 с.

5. Ютт В.Е., Рузавин Г.Е. Электронные системы управления ДВС и методы их диагностирования. М.: Изд-во Горячая линия-Телеком, 2007. 104 с.

Введение

Развитие электроники и микропроцессорной техники привело к широкому внедрению ее на автомобили. В частности, к созданию электронных систем автоматического управления двигателем, трансмиссией ходовой частью и дополнительным оборудованием. Применение электронных систем для управления (ЭСУ) двигателем позволяет снизить расход топлива и токсичности отработанных газов с одновременным повышением мощности двигателя, повысить приемистость и надежность холодного пуска. Современные ЭСУ объединяют в себе функции управления впрыском топлива и работой системы зажигания. Для реализации программного управления в блоке управления записывается зависимость длительности впрыска (количество подаваемого топлива) от нагрузки и частоты вращения коленчатого вала двигателя. Зависимость задается в виде таблицы, разработанной на основе всесторонних испытаний двигателя аналогичной модели. Подобные таблицы используются и для определения угла зажигания. Эта система управления двигателем используется во всем мире, потому что выбор данных из готовых таблиц является наиболее быстрым процессом, чем выполнение вычислений при помощи ЭВМ. Полученные по таблицам значения корректируются бортовыми компьютерами автомобилей в зависимости от сигналов датчиков положения дроссельной заслонки, температуры воздуха, его давления и плотности. Основным отличием данной системы, применяемой в современных автомобилях, является отсутствие жесткой механической связи между дроссельной заслонкой и педалью акселератора, ею управляющей. В сравнении с традиционными системами, ЭСУ позволяет снизить расход топлива на различных автомобилях до 20 % .

Низкое потребление топлива достигается путем различной организации двух основных режимов работы ДВС: режима малой нагрузки и режима высокой нагрузки. При этом двигатель в первом режиме работает с неоднородной смесью, большим избытком воздуха и поздним впрыском топлива, благодаря чему достигается расслоение заряда из смеси воздуха, топлива и оставшихся отработанных газов, в результате чего он работает на бедной смеси. На режиме высокой нагрузки двигатель начинает работать на гомогенной смеси, что приводит к уменьшению выбросов вредных веществ в отработанных газах. Токсичность выброса при применении ЭСУ дизельными двигателями при пуске позволяют снизить различные свечи накаливания. ЭСУ получает информацию о температуре воздуха на впуске, давлении, расходе топлива и положении коленчатого вала. Блок управления обрабатывает информацию от датчиков и, используя характеристические карты, выдает значение угла опережения подачи топлива. С целью учета изменения плотности поступающего воздуха при изменении его температуры датчик расхода оснащен терморезистором. Но в результате колебаний температуры и давления воздуха во впускном коллекторе, несмотря на вышеперечисленные датчики, происходит мгновенное изменение плотности воздуха и, как следствие, уменьшение или увеличение поступления кислорода в камеру сгорания.

Цель, задачи и метод исследования

В Тюменском государственном нефтегазовом университете были проведены исследования с целью поддержания постоянной температуры во впускном коллекторе ДВС КАМАЗ-740, ЯМЗ-236 и D4FB (1.6 CRDi) автомобиля Киа Сид, MZR2.3-L3T - Мазда CX7. При этом температурные колебания воздушной массы учитывались температурными датчиками. Обеспечение нормальной (оптимальной) температуры воздуха во впускном коллекторе должно выполняться при всех возможных эксплуатационных режимах: пуске холодного двигателя, работе на малых и высоких нагрузках, при работе в условиях низких температур окружающей среды.

В современных быстроходных двигателях суммарная величина теплообмена оказывается незначительной и составляет около 1 % от всего количества тепла, выделенного при сгорании топлива. Увеличение температуры подогрева воздуха во впускном коллекторе до 67 ˚С приводит к уменьшению интенсивности теплообмена в двигателях, то есть уменьшению ΔТ и увеличению коэффициента наполнения. ηv (рис.1)

где ΔТ - разность температур воздуха во впускном коллекторе (˚К), Тп - температура нагрева воздуха во впускном коллекторе, Тв - температура воздуха во впускном коллекторе.

Рис. 1. График влияния температуры подогрева воздуха на коэффициент наполнения (на примере двигателя КАМАЗ-740)

Однако подогрев воздуха более 67 ˚С не приводит к росту ηv в связи с тем, что плотность воздуха при этом уменьшается. Полученные экспериментальные данные показали, что воздух у дизельных двигателей без наддува во время его работы имеет интервал температур ΔТ=23÷36˚С. Испытаниями было подтверждено, что для ДВС, работающих на жидком топливе, разница в величине коэффициента наполнения ηv, рассчитанного из условий, что свежим зарядом является воздух или топливовоздушная смесь, незначительна и составляет менее 0,5 % , поэтому для всех типов двигателей ηv определяется по воздуху.

Изменение температуры, давления и влажности воздуха сказывается на мощности любого двигателя и колеблется в интервале Ne=10÷15% (Ne - эффективная мощность двигателя).

Повышение аэродинамического сопротивления воздуха во впускном коллекторе объясняется следующими параметрами:

    Повышенной плотностью воздуха.

    Изменением вязкости воздуха.

    Характером поступления воздуха в камеру сгорания.

Многочисленными исследованиями доказано, что высокая температура воздуха во впускном коллекторе увеличивает расход топлива незначительно. В то же время низкая температура увеличивает его расход до 15-20 %, поэтому исследования проводились при температуре наружного воздуха -40 ˚С и его нагреве до +70 ˚С во впускном коллекторе. Оптимальной по расходу топлива является температура воздуха во впускном коллекторе 15÷67 ˚С.

Результаты исследования и анализ

Во время испытаний была определена мощность нагревательного элемента для обеспечения подержания определенной температуры во впускном коллекторе ДВС. На первой стадии определено количество тепла, необходимого для нагрева воздуха массой 1 кг при постоянной температуре и давлении воздуха, для этого примем: 1. Температура окружающего воздуха t1=-40˚C. 2. Температура во впускном коллекторе t2=+70˚С.

Количество необходимого тепла находим по уравнению:

(2)

где СР - массовая теплоемкость воздуха при постоянном давлении, определяется по таблице и для воздуха при температуре от 0 до 200 ˚С.

Количество тепла для большей массы воздуха определяется по формуле:

где n - объем воздуха в кг, необходимого для нагрева при работе двигателя.

При работе ДВС на оборотах более 5000 об/мин расход воздуха легковых автомобилей достигает 55-60 кг/час, а грузовых - 100 кг/час. Тогда:

Мощность нагревателя определяем по формуле:

где Q - количество тепла, затраченное на нагревание воздуха в Дж, N - мощность нагревательного элемента в Вт, τ - время в сек.

Необходимо определить мощность нагревательного элемента в секунду, поэтому формула примет вид:

N=1,7 кВт - мощность нагревательного элемента для легковых автомобилей и при расходе воздуха более 100 кг/час для грузовых - N=3,1 кВт.

(5)

где Ттр - температура во впускном трубопроводе, Ртр - давление в Па во впускном трубопроводе, Т0 - , ρ0 - плотность воздуха, Rв - универсальная газовая постоянная воздуха.

Подставляя формулу (5) в формулу (2), получаем:

(6)

(7)

Мощность нагревателя в секунду определим по формуле (4) с учетом формулы (5):

(8)

Результаты расчетов количества тепла, необходимого для нагрева воздуха массой 1 кг со средним расходом воздуха для легковых автомобилей более V=55кг/час и для грузовых - более V=100кг/час, представлены в таблице 1.

Таблица 1

Таблица определения количества тепла для нагрева воздуха во впускном коллекторе в зависимости от наружной температуры воздуха

V>55кг/час

V>100кг/час

Q, кДж/сек

Q, кДж/сек

На основании данных таблицы 1 построен график (рис. 2) количества тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры. На графике видно, что чем выше температура воздуха, тем меньшее количество тепла необходимо для поддержания оптимальной температуры во впускном коллекторе, вне зависимости от объема воздуха.

Рис. 2. Количество тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры

Таблица 2

Расчет времени нагрева различных объемов воздуха

Q1, кДж/сек

Q2, кДж/сек

Время определено по формуле τсек=Q/N при температуре наружного воздуха >-40˚С,Q1 при расходе воздуха V>55 кг/час и Q2- V>100 кг/час

Далее по таблице 2 построен график времени нагрева воздуха до +70 ˚С в коллекторе ДВС при различной мощности нагревателя. На графике видно, что независимо от времени нагрева при повышении мощности нагревателя время нагрева разных объемов воздуха выравнивается.

Рис. 3. Время нагрева воздуха до температуры +70 ˚С.

Заключение

На основании расчетов и экспериментов установлено, что наиболее экономичным является использование нагревателей переменной мощности для поддержания заданной температуры во впускном коллекторе с целью получения экономии топлива до 25-30 %.

Рецензенты :

Резник Л.Г., д.т.н., профессор кафедры «Эксплуатация автомобильного транспорта» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Мерданов Ш.М., д.т.н., профессор, заведующий кафедрой «Транспортные и технологические системы» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Захаров Н.С., д.т.н., профессор, действующий член Российской академии транспорта, заведующий кафедрой «Сервис автомобилей и технологических машин» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Библиографическая ссылка

Карнаухов В.Н. ОПТИМИЗАЦИЯ МОЩНОСТИ НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ПОДДЕРЖАНИЯ ОПТИМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА ВО ВПУСКНОМ КОЛЛЕКТОРЕ ДВС // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13575 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Новое на сайте

>

Самое популярное