Домой Мама Dsl соединение. Как увеличить скорость передачи данных через ADSL. Как работает DSL

Dsl соединение. Как увеличить скорость передачи данных через ADSL. Как работает DSL

Для большинства домашних пользователей и сегодня единственным доступным способом подключения к Интернету остается модемное соединение. И это несмотря на то, что аналоговые модемы в наш XXI век кажутся своего рода атавизмом, пережитком века ушедшего.

то ж, модемы за свою 30-летнюю жизнь хорошо послужили людям, но… увы, - их потенциальные возможности себя полностью исчерпали и в настоящий момент не отвечают требованиям пользователей по скорости доступа в Интернет. Начав с нескольких сотен бит в секунду в первых моделях модемов, скорость соединения за истекшие десятилетия удалось повысить до 33,6 Кбит/с в протоколе V.34+ и даже (при выполнении некоторых условий) до 56 Кбит/с в сторону от провайдера в протоколе V.90. Дальнейшее увеличение скорости соединения при использовании коммутируемых каналов связи теоретически невозможно. Но даже такие скорости соединения оказались недоступными для многих пользователей. Дело в том, что скорость соединения зависит не только и не столько от самого модема, сколько от качества коммутируемого канала связи с провайдером Интернета. А это самое качество далеко от совершенства. Но даже если предположить, что все линии идеальны, скорости соединения 56 Кбайт/с сегодня явно недостаточно. При быстро меняющемся контенте Интернет-ресурсов бродить по Сети с такими скоростными возможностями - занятие не для слабонервных.

В результате новый протокол модемной связи V.92, который, впрочем, не предусматривает более высоких скоростей соединения, оказался невостребованным, и даже в Москве провайдеры Интернет-услуг не стали на него переходить.

Крупные производители, заранее осознав всю бесперспективность производства новых моделей модемов, ушли с этого рынка, отдав производство модемов на откуп более мелким компаниям. Понятно, что модемы, в силу их востребованности со стороны домашних пользователей, еще долго не покинут витрин компьютерных салонов, однако ожидать появления их новых моделей не приходится. Собственно, новые чипы для них уже не разрабатываются, поэтому «новый» модем - это в лучшем случае старая начинка в новом корпусе.

Итак, модем как средство доступа в Интернет постепенно исчезает. Как мы уже отмечали, это связано с ограниченными возможностями телефонных линий связи и с изменением самого контента. На этом фоне востребованными со стороны конечных пользователей становятся различные варианты широкополосного доступа.

Нарастающая конкуренция между традиционными и альтернативными операторами на рынке местных линий связи заставляет и тех и других оптимизировать свои сети в целях предоставления наиболее выгодных с точки зрения стоимости услуг. Как правило, это единый пакет, включающий передачу речи, данных, мультимедиа и доступа в Интернет. Более того, провайдеры услуг ориентируются на обеспечение конкурентных преимуществ перед соперниками в целях привлечения потенциальных клиентов за счет «созданных с запасом на будущее» решений, обусловленных используемой сетевой архитектурой, готовой к быстрому росту приложений, требующих большой полосы пропускания, таких как видео по IP и мультимедийные Интернет-приложения.

Прокладывание оптоволоконного кабеля в жилые дома, многоквартирные здания и в места размещения малых офисов/домашних офисов (SOHO, Small Office/Home Office) становится востребованным в плотно заселенных городских районах. Провайдеры услуг пытаются использовать возможности широкополосного доступа, предоставляя услуги высокоскоростной передачи многоквартирным домам, бизнес-центрам со множеством арендаторов, а также отелям. Такие клиенты в сегменте малого бизнеса могут быть определены как прибыльные новые рынки, нуждающиеся в широкополосных услугах.

Провайдер услуг, ориентирующийся на широкополосный доступ, имеет возможность продавать прямое подключение к Интернету отдельным пользователям и организациям малого бизнеса. Выступая в роли провайдера Интернет-услуг (ISP) в пределах города, он может предлагать новые комплексные услуги с добавленной стоимостью. Примерами таких услуг являются: распространение потокового видео, видеофильмов в режиме по требованию, популярного Web-содержания, а также специализированные услуги хостинга в пределах города.

Среди многочисленных вариантов широкополосного доступа в Интернет для конечных пользователей наибольшую популярность приобрели различные варианты домашних сетей. Построение таких сетей может осуществляться с использованием разнообразных типов среды передачи: оптоволокно, коаксиальный кабель, витая пара категории 5, существующие телефонные линии (используя DSL) и технологии беспроводных сетей.

Из числа наиболее популярных методов широкополосного доступа в Интернет можно выделить сети кабельного телевидения и выделенное DSL-соединение. Спутниковый Интернет, организация радиоканалов для доступа в Интернет и набирающие популярность беспроводные сети отличаются от перечисленных технологий тем, что не требуют наличия кабельной инфраструктуры и в этом смысле имеют огромное преимущество. Однако говорить о массовом внедрении беспроводных технологий на родных просторах пока еще слишком рано. В последнее время стали появляться и другие альтернативные технологии. Одна из них - Ethernet To The Home (ETTH) - подразумевает использование технологии Ethernet для организации соединения между пользователем и провайдером.

Рассмотрим более подробно конкретные технологии доступа в Интернет.

Сети кабельного телевидения (СКТ)

ервоначально кабельное телевидение появилось как организация множества видеоканалов в квартирах и домах. С технической точки зрения каждый такой канал имеет ширину спектра в 6 МГц. Этой полосы пропускания вполне достаточно, чтобы передавать по коаксиальному кабелю цифровые данные на скорости порядка 40 Мбит/с, а следовательно, существует возможность использовать сети кабельного телевидения как транспортное средство для доступа в Интернет.

Для подключения к Интернету через сеть кабельного телевидения необходим кабельный модем. Кабельный модем - это абонентское устройство, обеспечивающее высокоскоростной доступ к Интернету по сетям кабельного телевидения. Применение подобных модемов ориентировано в первую очередь на домашних пользователей, поскольку линии кабельного телевидения существуют преимущественно в жилых кварталах.

При доступе в Интернет посредством кабельного модема используется асимметричная технология, то есть рассматриваются прямой (от сети к пользователю) и обратный (от пользователя к сети) каналы передачи.

Максимально возможная скорость прямого канала (скорость приема данных) составляет порядка 40 Мбит/с, а скорость обратного канала (скорость передачи данных в сеть) - порядка 10 Мбит/с.

Как и традиционный аналоговый модем, предназначенный для работы по коммутируемым линиям связи, кабельный модем осуществляет цифроаналоговое преобразование при передаче данных и аналого-цифровое преобразование при приеме данных. То есть точно так же, как и видеосигнал, данные передаются по коаксиальному кабелю в аналоговой форме. При этом передача данных и прием телевизионных программ ведутся одновременно, по одному и тому же кабелю, не мешая друг другу.

Для подключения кабельного модема используется разделитель (сплиттер), который разделяет сигналы между кабельным модемом и телевизором и с одной стороны подключается к коллективной антенне, а с другой - к телевизору и кабельному модему.

Любой кабельный модем состоит из пяти функциональных блоков: тюнера, демодулятора, модулятора, МАС-контроллера и контроллера интерфейса.

К сплиттеру модем подключается через тюнер, который имеет встроенный диплексер для приема и передачи сигналов. Принятый сигнал подается на демодулятор. Данный блок выполняет функции преобразования сигнала из аналоговой в цифровую форму, декодирования QAM-64/256, синхронизации кадров и коррекции ошибок. При передаче данных используется модулятор, который выполняет функции, обратные демодулятору, - кодирование QAM-64/256, цифроаналоговое преобразование и т.д. Часто демодулятор и модулятор реализуются в виде одной микросхемы.

Блок контроля доступа к среде передачи (Media Access Conrol, MAC) управляет доступом к обратному каналу. Из-за сложности применяемых алгоритмов реализация функций уровня MAC требует применения микропроцессоров.

После обработки в блоке MAC данные передаются на компьютер через интерфейс. Помимо Ethernet 10/100Base-TX это может быть также USB, а нередко одновременно присутствуют оба интерфейса.

Существуют две технологии организации передачи данных через СКТ - TELCO-Return и Cable-Return, различающиеся способом организации обратного канала.

В случае TELCO-Return для организации обратного канала предусматривается использование обычного коммутируемого соединения. То есть абонент получает данные по высокоскоростному каналу сети кабельного телевидения, а исходящий поток данных к Интернет-провайдеру организуется с использованием дополнительного аналогового модема.

Технология Cable-Return основывается на применении гибридных сетей (так называемые сети HFC), состоящих из участков оптического и коаксиального кабеля. В таких сетях имеется возможность не только передавать поток данных к абоненту, но и получать данные от абонента. При этом как высокоскоростной входящий поток, так и более медленный исходящий поток передаются по одному и тому же коаксиальному кабелю.

Прямой канал организуется в диапазоне частот от 50 до 860 МГц, а обратный - от 5 до 50 МГц. Прямой канал занимает полосу одного телевизионного канала шириной в 6 МГц. Обратных каналов, как правило, несколько. Это связано с тем, что в обратном канале заметно влияние различных помех, например от работающих вблизи кабельной сети радиопередатчиков, неплотно состыкованных соединений и разъемов. Физическое разделение обратных каналов исключает их взаимное влияние. В прямом канале, работающем на более высокой частоте, таких проблем не бывает.

Основным преимуществом получения доступа в Интернет через сети кабельного телевидения является сравнительно невысокая абонентская плата, составляющая несколько десятков долларов в месяц, в зависимости от тарифного плана. Подключение к этой сети также стоит относительно недорого. Кабельный модем, конечно, несколько дороже обычного, но его можно взять в аренду с правом выкупа.

К сожалению, несмотря на все свои преимущества, кабельное телевидение все еще не получило достаточно широкого распространения, чтобы можно было считать эту технологию массовой. Этот сервис по-прежнему представляется весьма многообещающим в силу довольно удачного соотношения «цена/качество», и, по всей видимости, со временем подобные услуги станут более доступными, чем сегодня.

DSL-соединение

Широкое распространение DSL (Digital Subscriber Line), что в буквальном переводе означает «цифровая абонентская линия», обусловлено тем обстоятельством, что в данном случае, так же как и в случае традиционных пользовательских модемов, используется обычная телефонная линия. То есть инфраструктура для создания DSL-соединений уже существует. Однако, в отличие от традиционных коммутируемых соединений, DSL-соединение является широкополосным и не упирается в ограничение по ширине спектра сигнала в 3100 Гц, характерное для коммутируемых линий связи. Кроме того, DSL-модемы передают данные в цифровой форме, а не используют цифроаналоговое преобразование при передаче и аналого-цифровое преобразование при приеме данных, что характерно для традиционных аналоговых модемов.

Технология DSL позволяет значительно расширить полосу пропускания старых медных телефонных линий, соединяющих телефонные станции с индивидуальными абонентами. Любой абонент имеет возможность значительно увеличить с помощью технологии DSL скорость своего соединения. Помимо того, что использование DSL-соединения обеспечивает вам круглосуточный доступ в Интернет, сохраняется также возможность нормальной работы обычной телефонной связи.

Скорость связи DSL-соединения зависит от качества и протяженности линий, соединяющих пользователя и провайдера. При этом провайдеры обычно дают пользователю возможность самому выбрать скорость соединения, наиболее соответствующую его индивидуальным потребностям.

Когда говорят о DSL-технологиях, обычно имеют в виду целый спектр технологий, которые иногда называют xDSL. Различные технологии отличаются друг от друга своим предназначением, скоростью «нисходящего» (от сети к пользователю) и «восходящего» (от пользователя в сеть) трафика и максимальным расстоянием. Наиболее популярны следующие DSL-технологии: ADSL, G.Lite, RADSL, HDSL, VDSL, SDSL.

ADSL

ADSL (Asymmetric Digital Subscriber Line) - это асимметричное DSL-соединение, при котором скорость нисходящего трафика выше, чем скорость восходящего трафика. Такая асимметрия делает технологию ADSL идеальной для организации доступа в Интернет, когда пользователи получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость нисходящего трафика в пределах от 1,5 до 8 Мбит/с и скорость восходящего трафика от 640 Кбит/с до 1,5 Мбит/с.

ADSL позволяет передавать данные со скоростью 1,54 Мбит/с на расстояние до 5,5 км по одной витой паре проводов. Скорость передачи порядка 6-8 Мбит/с может быть достигнута при передаче данных на расстояние не более 3,5 км.

G.Lite

G.Lite, известное также как ADSL.Lite, - это упрощенный вариант ADSL, обеспечивающий скорость нисходящего трафика до 1,5 Мбит/с и скорость восходящего трафика до 512 Кбит/с. Как и в случае ADSL-соединения, здесь используется всего одна витая пара.

RADSL

RADSL (Rate Adaptive Digital Subscriber Line) - это вариант асимметричного DSL-соединения с адаптацией скорости соединения. Технология RADSL обеспечивает такую же скорость передачи данных, что и технология ADSL, но при этом позволяет адаптировать скорость передачи в зависимости от протяженности линии и ее зашумленности.

HDSL/HDSL2

HDSL (High Bit-Rate Digital Subscriber Line) - это высокоскоростное DSL-соединение. В отличие от уже рассмотренных DSL-технологий, в данном случае предусматривается симметричное DSL-соединение по нисходящему и восходящему трафикам. HDSL-соединение требует наличия двух или даже трех пар проводов. При использовании двух пар скорость передачи данных составляет 1,544 Мбит/с, а при использовании трех пар - 2,048 Мбит/с. Телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1. Линии Т1 применяются в США и обеспечивают скорость передачи данных 1,544 Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2,048 Мбит/с.

Технология HDSL2 является логическим результатом развития технологии HDSL. Данная технология обеспечивает характеристики, аналогичные технологии HDSL, но при этом использует только одну пару проводов.

SDSL

SDSL (Single Line Digital Subscriber Line) - это симметричное по скорости нисходящего и восходящего трафиков однолинейное DSL-соединение. Технология SDSL, так же как и HDSL, обеспечивает скорость соединения, соответствующую линиям T1/E1, но при использовании всего одной линии (одной пары телефонных проводов). В этом смысле технология SDSL схожа с HDSL2. Максимальное расстояние передачи по SDSL-соединению ограничено 3 км.

VDSL

VDSL (Very High Bit-Rate Digital Subscriber Line) - это сверхвысокоскоростная DSL-линия.

В асимметричном режиме по одной витой паре скорость нисходящего трафика составляет от 13 до 52 Мбит/с, а скорость восходящего трафика - от 1,5 до 2,3 Мбит/с.

В симметричном режиме поддерживаются скорости до 26 Мбит/с.

Максимальное расстояние передачи данных для этой технологии составляет от 300 до 1300 м.

Практическая реализация

Из всех рассмотренных DSL-соединений особый интерес для конечного пользователя представляет именно ADSL.Lite. Собственно, большинство провайдеров предлагают конечным пользователям именно этот тип широкополосного соединения.

Для реализации ADSL-соединения к окончаниям медной пары подключаются специальные цифровые устройства (сплиттеры) - один на АТС, другой в квартире абонента, - которые обеспечивают одновременную работу и телефона, и Интернета. Абонентский сплиттер имеет два выхода, один из которых подключается к телефону (или к офисной АТС), а другой - к ADSL-модему. Аналогично один выход станционного сплиттера подключен к АТС, а другой - к мультиплексору (DSLAM), связанному с Интернетом. В результате вся полоса пропускания медной пары разбивается на 247 отдельных каналов, с пропускной способностью 4 кГц каждый. Если отвлечься от технических деталей, то это выглядит так, будто между абонентом и зданием АТС проложено 247 независимых телефонных линий, по двум из которых передается голос, а по остальным - данные.

Весь скоростной поток разбивается на большое число более мелких потоков, которые на концах линии вновь собираются в единое целое. Система управления построена таким образом, что непрерывно производится мониторинг состояния каждого канала и информация направляется в те из них, которые обладают наилучшими характеристиками.

Ethernet To The Home (ETTH)

спользование Ethernet для доступа в Интернет - это относительно новая технология, которая еще не получила широкого распространения на российских просторах.

Цель решения Ethernet To The Home (дословно - Ethernet в дом) заключается в передаче данных, речи и видео по простой и недорогой сети Ethernet. Уникальность данного решения заключается в том, что использование Ethernet с оптоволокном в качестве среды передачи позволяет обеспечить гигабитный доступ по сети непосредственно из помещений клиентов. На рынке имеется большое количество зданий, привлекательных для провайдеров сетевых услуг: офисные комплексы, коммерческие бизнес-парки, отели, университеты, многоквартирные жилые дома, коттеджные поселки. Для обеспечения Ethernet-подключения новых зданий к городским сетям (MAN) провайдеры сетевых услуг обычно используют оптоволокно. Основными преимуществами такого доступа являются скорость и расстояния - до 100 км без промежуточного усиления и регенерации при потенциально неограниченной пропускной способности. Гигабитный Ethernet (1 Гбит/с и 10 Гбит/с) стал привлекательным в плане соотношения «цена/производительность», сделавшись удачным выбором для магистральных приложений при построении не только выделенных корпоративных сетей, но и операторских сетей Metro Ethernet. Оптимальным вариантом проводки внутри здания является одномодовое и многомодовое оптоволокно, а также витая пара категории 5. Разработанная в качестве технологии локальных сетей технология Ethernet обеспечивает огромную и дешевую пропускную способность по сравнению с DSL, кабельными модемами и беспроводными решениями. Типичной архитектурой является реализация на первом этапе в каждой квартире в любом помещении здания 10- или 100-мегабитных Ethernet-каналов, соединенных с обслуживающим это здание коммутатором. Для подключения зданий к оптоволоконной городской сети MAN организуется гигабитное или мультигигабитное Ethernet-соединение. Агрегация трафика кольцевых городских сетей осуществляется посредством коммутатора 3-го уровня.

По оценкам различных аналитиков, именно технология ETTH, а не DSL является лучшим широкополосным решением для абонентского доступа. ETTH лишена всех ограничений по скорости и расстоянию, свойственных DSL и не позволяющих ей считаться долгосрочным вариантом широкополосного доступа. ETTH же признана в качестве долгосрочного решения даже несмотря на то, что ей требуются значительные начальные инвестиции. Эта технология имеет больший срок службы и не имеет каких-либо существенных ограничений. И хотя сегодня существует несколько технологий доступа для обеспечения широкополосных мультимедийных подключений, ETTH гарантирует провайдеру услуг весомые преимущества относительно конкурентов. С точки зрения провайдера услуг, эта технология позволяет ему успешно конкурировать с более экономичными решениями, с такими, например, как DSL. VDSL, одна из разновидностей DSL, может даже служить временным решением последней мили внутри здания. Другой, менее скоростной временной альтернативой, может быть радиоEthernet.

Под понятием DSL (ang. Digital Subscriber Line) скрывается семья технологий, делающая возможным трансмиссию электронно-вычислительных данных с максимальную пропускную способностью до 40 МБ/с, используя классические, аналоговые, телефонные линии. С практической стороны процедура выглядит следующим образом:

Как трансляционный медиум между двумя отдалёнными друг от друга компьютерами или устройствами, служит аналоговая телефонная линия.
. До обоих концов линии подключаются устройства DSL (разговорно называемые модемами), а до модемов - компьютеры, с помощью типичного, многожильного сетевого кабеля (витая пара).
. Модем DSL принимает от компьютера информации в электронно-вычислительной форме, затем преобразовывает в аналоговую форму и посылает телефонной линией второму из модемов.
. Модем получателя опять производит конверсию сигналов, в этот раз на информацию в электронно-вычислительной форме, и передаёт неё компьютеру.
. Модемы DSL до передачи информаций используют диапазон частот больше 5 КГц, которые не используются во время нормальных разговоров по телефону.
. Между модемом и телефонной линией должно находиться устройство, называемые сплиттер, являющиеся просто аналоговым фильтром. Его роль - это распределение сигнала с частотой меньше 5 КГц, и направление его к телефону, а также распределение сигнала с высшую частотой, который должен попасть в модем DSL.

В настояшее время на рынке доступные многие технологии из семьи DSL (хотя более соответствующее и чаще встречаемое название - это xDSL). Наиболее популярные это:

ADSL (ang. Asymmetric Digital Subscriber Line) - асимметрический ретранслятор. Он используется при создавании абонентских связей с Интернетом. Его признак - это максимальная пропускная способность в сторону клиента выше чем в сторону сервера (Интернета). В основе этого решения лежит факт, что средний пользователь Интернета значительно больше данных скачивает на свой персональный компьютер, чем высылает в сеть. Следовательно, технология несимметричного ретранслятора позволит увеличить комфорт работы при одновременном понижению или сохранению его качества и стоимости загрузки. Чаще всего встречаемые пропускные способности ADSL - это с 8 до 24 МБ/с к пользователю, и с 128 КБ/с до 1 МБ/с от пользователя.
. SDSL (ang. Symmetric Digital Subscriber Line) - симметрический ретранслятор. Относительно редко применяемый во время снройки сети доступа в Интернет. Его признаком является одинаковая пропускная способность в обе стороны, чаще всего составляющая 1,5 или 2 МБ/с.
. HDSL (ang. High data rate Digital Subscriber Line) - одна из новейших технологий из семьи xDSL, использующая медные телефонные проводы как трансляционный медиум. Вместе с тем она пользуется значительно шире объёмом частот - с 5 до 300 КГц. Благодаря этому решению существует возможность получить пропускную способность до 784 КБ/с на одной паре медных проводов. Максимальная пропускная способность ретранслятора зависит непосредственно только от числа пар проводов. Недостатком технологии HDSL является то, что её качество и пропускная способность ретранслятора ухудшаются вместе с увеличением длины кабельной системы. Максимальная дальность одного сегмента может составлять до 4000 метров.
. VDSL (ang. Very High Speed Digital Subscriber Line) - технология, делающая возможным получение пропускной способности до 52 МБ/с в одну сторону или 26 МБ/с в обе стороны, употребляя только одну пару медных проводов. Её основным недостатком является максимальная дальность отдельных сегментов кабельной системы, которая не может превысить 300 метров. В этой связи технология VDSL используемая чаще всего в строении локальной инфраструктуры доступа в компьютерную сеть.
. Кроме вышеуказанных, существует ещё ряд других технологий из семьи xDSL, как например IDSL (электронно-вычислительная, абонентская линия, близкая к ISDN), skyDSL (технология, использующая спутниковые ретрансляторы), и т. п. Однако они используются в значительно меньшем масштабе. Итак, их значение отчётливо меньше.

Технология DSL

Технология DSL. Любая технология, прежде всего, предусматривает конкретную физическую модель транспортной среды. Одной из перспективных технологий, позволяющей передавать цифровую информацию по медным проводам (под “медными проводами” обычно понимается телефонная сеть общего пользования – ТФоП или POTS – Plain Old Telephone Service в англ. аббревиатуре) являются технологии DSL (Digital Subscriber Line – цифровая абонентская линия).

При использовании технологии DSL (часто используется аббревиатура хDSL , где под буквой “x” понимают одну из возможных подтехнологий, т.е. вариант основной технологии) не требуется строить новую транспортную сеть, т.к. используется уже существующая сеть POTS. Именно в этом и заключается основное экономическое преимущество технологии DSL.

Историю возникновения DSL следует отнести к началу 80-х годов, когда корпорация Bellcore разработала технологию DSL с высокой скоростью передачи данных (high - data - rate DSL - HDSL). Канал HDSL был разработан, чтобы расширить возможности технологии Т1 путем замены кодирования с чередованием полярности элементов на основе представления двух битов в одном четвертичном коде (2 binary 1 quaternary – 2B1Q).

Развитие служб сети Internet, для которых требуется высокая пропускная способность (например, видео), породило спрос на соединения с большей пропускной способностью. Наблюдения показывают, что в основном трафик, получаемый из сети Internet, предназначен для конечного пользователя (нисходящий поток данных), и только небольшой процент составляет трафик, который в действительности поставляется самим пользователем (восходящий поток данных). Вследствие этого был разработан канал АDSL (A – Asymmetric – ассиметричная цифровая пользовательская линия), используемый в традиционных телефонных сетях общего пользования (PSTN – Public Switched Telephone Network).

В технологии АDSL используется метод, позволяющий одновременно использовать ту же самую телефонную линию и для передачи голосовых сигналов, и для передачи данных, не повышая при этом требований к коммутационному оборудованию телефонной сети PSTN. Чтобы зарезервировать канал POTS с частотами до 4 кГц (в телефонии установлена полоса голоса в 4 кГц), дополнительно используется мультиплексирование с частотным уплотнением каналов (FDM – Frequency - Division Multiplexing). При этом цифровые потоки (data) передаются на частотах свыше 4 кГц (обычно, начиная с 25 кГц).

Из-за постоянного снижения ограничений на расстояние в технологии DSL и роста доступной пропускной способности, интерес к средствам DSL в последние годы возрос. Прежде чем говорить о DSL, приведем основные разновидности технологии DSL.

  • АDSL – наиболее распространенная технология DSL, поскольку она ассиметрична. Это означает, что скорость загрузки данных в компьютер (модем) пользователя выше скорости загрузки данных в удаленный компьютер. Для кодирования данных в технологии АDSL используются методы САР (Carrier less Amplitude and Phase modulation – амплитудная и фазовая модуляция без несущей). Метод САР не является стандартизированным методом для канала DSL, а вот ДМТ был стандартизирован институтом ANSI (ANSI T1.413) и международным союзом ITU (ITU G.992.1).
  • EtherLoop – запатентованная технология компании Elastic Network – сокращение от Ethernet local loop – абонентский канал сети Ethernet. В технологии EtherLoop применяется усовершенствованный метод модуляции сигнала, который сочетается с полудуплексным разбиением на пакеты, характерным для сети Ethernet. Модемы EtherLoop гарантируют ВЧ сигналы только на время посылки. Остальное время в них используются низкочастотные управляющие сигналы. Из-за полудуплексной природы технологии EtherLoop постоянную пропускную способность можно поддерживать либо только в нисходящем, либо только в восходящем потоке. Система Nortel изначально планировалась для скоростей в диапазоне 1,5 … 10 Мбит/с, в зависимости от качества линии связи и ограничений по расстоянию.
  • G.L.te – версия ADSL с низкой скоростью передачи данных. Является дополнением к стандарту ANSI T 1.413. В комитете по стандартам ITU она известна как G .992.2. В ней, как и в ADSL используется модуляция DMT, но в здании абонента не устанавливается разветвитель сети POTS (обычно разветвление сигнала выполняется средствами местной станции АТС).
  • G.SHDSL – этот канал был определен в стандарте G.991.2 международного союза ITU как высокоскоростная цифровая абонентская линия на одной витой паре проводов. Технология G.SHDSL является симметричной, что позволяет передавать с одинаковой скоростью данные в прямом и реверсном потоках, что очень важно, т.к. она призвана заменить старые телекоммуникационные технологии, такие как T1, E1, HDSL, HDSL2, канальную технологию DSL (SDSL), ISDN и DSL на основе ISDN (IDSL).
  • HDSL – этот канал работает на скорости 1,54 Мбит/с и имеет радиус действия порядка 2750 м на проводе сечением 0,5 мм 2 . В технологии HDSL используется модуляция с линейным кодированием 2B1Q.
  • GDSL 2 – эта технология разрабатывалась для того, чтобы обеспечить передачу сигнала Т1 по проводам одной пары. Технология создавалась для работы на скорости 1,544 Мбит/с. Она может обеспечить работу всех служб, которые предлагаются технологией HDSL.
  • TDSL – в этой службе DSL, основанной на технологии ISDN, используется линейное кодирование 2B1Q и, как правило, поддерживается скорость передачи данных 128 кбит/с. Служба IDSL работает на одной паре проводов, а сам канал может иметь длину вплоть до 5800 м.
  • RADSL - используются во всех RADSL модемах, но она особым способом связана с запатентованным стандартом модуляции, разработанным компанией Globespan Semiconductor. В ней используются DMT-модемы стандарта САР.Т1.413. Скорость по восходящей линии связи зависит от скорости передачи по нисходящей линии связи, которая, в свою очередь, зависит от состояния линии и значения S/N (отношения сигнал/шум).
  • SDSL – технология предусматривает постоянную скорость передачи данных и не имеет существующих стандартов, в силу чего используется редко.
  • VDSL – сверхскоростной канал DSL для передачи данных (Very - high - data - rate DSL) – относительно новая технология, разработанная для повышения доступной скорости передачи данных (вплоть до 52 Мбит/с). В технологии VDSL используются преимущества оптоволоконной связи и выгоды от размещения конечного оборудования ближе к абоненту. Размещая конечное оборудование в офисах и многоквартирных зданиях, можно сократить длину локальной линии связи (т.е. абонентского канала), что позволит увеличить скорость. В технологии VDSL предполагается работа как в ассиметричном, так и в симметричном режимах.

В табл.1 приведено сравнение некоторых разновидностей технологий DSL и показаны их наиболее важные характеристики, поддающиеся сравнению.

Методы кодирования в технологии DSL

В технологии DSL наибольшее распространение получили три основных метода кодирования, кратко рассмотренные ниже.

Таблица 1 Сравнение различных технологий DSL
Техно- логия Макс. скорость восхо-дящего потока данных (Мбит/с) Макс. скорость нисхо-дящего потока данных (Мбит/с) Стандарт диаметра проводов Максимальное расстояние (метры) Кодиро-вание Стандарты
ADSL 0,8 8 несколько 5200 САР или DMT ANSI T1.413 и ITU G.992.1
EtherLoop 6 6 несколько 6400 QPSK,
16QAM, 64QAM
Запатентованная технология компании Elastic Networks
G.Lite 0,512 1,5 несколько 6700 DMT ITU G.992.2
G.SHDSL 2,304 2,304 несколько 6100 TC PAM ITU G.992.1
HDSL 1,544
Т1
2
Е1
1,544
Т1
2,0 Е1
26 AWG*) 24 AWG*) 2750
3650
2B1Q ITU G.992.1
HDSL2 1,544
Т1
2
Е1
1,544
Т1
2,0 Е1
26 AWG*) 24 AWG*) 2750
3650
ТС РАМ ITU G.992.1
IDSL 0,144 0,144 несколько 5800 2B1Q ANSI T1.601
и TR-393
RADSL 1,088 7,168 несколько 5500 САР или DMT ANSI T1.413
и ITU G.992.1
SDSL 0,768 0,768 несколько 3050 2B1Q ITU G.992.1
VDSL 20 52 несколько 910 CAP/DMT/
DWMT/SLC
TBD
*) 26 AWG и 24 AWG – 0,4 мм и 0,5 мм соответственно

1) Квадратурная амплитудная модуляция (Quadrature Amplitude Modulation - QAM) соответствует изменению (фиксированному смещению) амплитуды и фазы сигнала различным значениям битов. Название квадратурная амплитудная модуляция (т.е. QAM) возникло потому, что сигналы отличаются по фазе на 90 о, и 4 такие фазы (отсюда и квадратурная ) вместе составляют 360 o , или полный цикл. На рис.1 (созвездие QAM) показано кодирование QAM с тремя битами на бод (состояния сигнала описываются различными амплитудами и фазами). В каждом из направлений (0 о, 90 о, 180 о и 270 о) находятся две точки, соответствующие двум возможным значениям амплитуды, что дает в результате восемь различных состояний. Если есть восемь уникальных состояний, то в каждом из них можно передать по 3 бита (2 3 = 8).

Таблица 2
Амплитуда Фаза Битовая комбинация
1 0 0
2 0 1
1 90 10
2 90 11
1 180 100
2 180 101
1 270 110
2 270 111

В табл.2 показаны возможные значения для кодирования 8 QAM (8 возможных битовых комбинаций). Чем больше различных фазовых смещений и уровней амплитуды используется, тем больше битов информации можно включить в каждую точку или символ. Проблемы возникают тогда, когда точки созвездия размещены настолько близко, что из-за шумов на линии или в приемном оборудовании невозможно отличить одну точку от другой.

2) Кодирование САР – это адаптивная форма кода QAM. Этот метод позволяет корректировать значения символов, учитывая состояние линии (например, шумов) в начале соединения. При кодировании с помощью данного метода из полученной на выходе волны удаляется несущая частота. В методе САР частотное уплотнение (FDM) обеспечивает поддержку трех подканалов – телефонного канала (POTS), канала передачи нисходящего потока данных (downstream) и канала передачи восходящего потока данных (upstream).

Голосовые сигналы занимают стандартную полосу частот 0…4 кГц (см. рис.2). В методе САР осуществляется адаптация скорости передачи, исходя из состояния канала, путем модификации номера битов или цикла (т.е. размер созвездия + скорость передачи битов несущих в бодах). На это указывают различные пары несущих частот (например, 17 кГц и 136 кГц).

На рис.2 показан частотный спектр САР-модуляции. Поддерживается доступ в двух частотных диапазонах: 25-160 кГц для upstream и 240-1100 кГц (вплоть до 1,5 МГц) – для downstream.

3) Кодирование DMT (Discreate Multi - Tone modulation 0 дискретная многочастот- ная (многотоновая) модуляция) – метод передачи сигналов, в котором полная полоса пропускания делится между 255 поднесущими или подканалами с шириной полосы пропускания в 4 кГц каждая. Первый канал поднесущей используется для передачи традиционного голосового сигнала и сети POTS. Данные upstream обычно передаются по каналам 7-32 (26-128 кГц), а данные downstream – по каналам 33-250 (138-1100 кГц). В действительности, метод DMT является разновидностью уплотнения FDM. Поток входящих данных делится на N каналов, имеющих одинаковую пропускную способность, но разную среднюю частоту несущей. Использование нескольких каналов с узкой полосой пропускания дает следующие преимущества:

  • какими бы ни были характеристики линии, все каналы остаются независимыми, поэтому их можно декодировать по отдельности;
  • при использовании DMT коэффициент передачи подбирается таким образом, чтобы каждый канал при наличии шума мог функционировать независимо; в этом методе изменяется количество битов на подканал или тон. В результате снижается общее воздействие шума при импульсной помехе на постоянной частоте.

Основными характеристиками метода DMT являются:

  • в методе используется мультиплексирование FDM, тесно связанное с ортогональным мультиплексированием с частотным разделением (Orthogonal Frequency - Division Multiplexing - OFDM), как и в DVB-T/H;
  • метод оговорен в стандарте Т1.413, разработанном Национальным институтом стандартизации США (American National Standards Institute - ANSI);

  • в канале заданы 256 подканалов;
  • полоса пропускания каждого подканала равна 4,3125 кГц;
  • каждый подканал независимо моделируется с помощью метода дискретной модуляции QAM;
  • коэффициент усиления (спектральная плотность) каждого подканала составляет 16 бит/с/Гц для теоретического значения пропускной способности, равного 64 кбит/с;
  • сигнал передается с помощью постоянного тока при ширине полосы пропускания 1,104 МГц;
  • теоретическая пропускная способность для данных с полосой пропускания 1,104 МГц равна 16,384 Мбит/с;
  • в стандартах ITU 992.1 (G.dmt), ITU 992.2 (G.lite) и ANSI T 1.431 Issue 2 оговорено использование различных вариантов и реализаций каналов ADSL, основанных на методе кодирования DMT;
  • метод DMT был принят комитетом ANSI T1 как стандарт кодирования для линий связи и используется в системах передачи сигналов по каналам ADSL.
  • На рис.3 показан частотный спектр для модуляции DMT.

    Типовое включение абонентского оборудования для одновременного просмотра TV программ и доступа к Internet показано на рис.4.

    Разделительный фильтр (частота разделения обычно располагается в диапазоне 6…8 МГц) иногда необоснованно называют сплиттером. По-существу, это частотный диплексер, в составе которого параллельно включены ФНЧ (фильтр нижних частот) и ФВЧ (фильтр верхних частот). В частности, такую схему проводки осуществляет компания “Стрим-ТВ”.

    На рис.5,6 проиллюстрированы общие возможные схемы физической прокладки проводки в помещении клиента. На рис.5 в абонентском оборудовании (СРЕ – Customer Premises Equipment) имеются интегрированные разветвители сети POTS, а на рис.6 показана линия, которая разветвляется на устройстве NID (Network Interface Device - устройство сетевого интерфейса, обычно являющееся точкой входа в здание абонента. В этой точке локальная линия связи переходит в проводку здания). В последнем случае сигнал (см. рис.6), подаваемый на обычный телефон, проходит через ФНЧ, а элементы данных, подаваемых на ответвления, проходят через ФВЧ. Такой подход гарантирует, что в обоих случаях будут получены необходимые сигналы. Обе топологии используются в зависимости от того, где должна ветвиться линия и где физически будут размещаться провода.

    Помехоустойчивость DSL оценивается по критерию частоты появления ошибки (BER – Bit Error Rate) BER≤10 -7 . При понижении S/N (Signal - to - Noise) в потоке данных появляется чрезмерное количество ошибок. Под запасом помехоустойчивости понимается разница в S/N (в dB) для реальной линии и для BER =10 -7 . При понижении S/N (Signal - to - Noise) в потоке данных появляется чрезмерное количество ошибок. Под запасом помехоустойчивости понимается разница в S/N (в dB) для реальной линии и для BER =10 -7 .

    В любой момент времени в линии может изменяться как уровень сигнала, так и уровень шума, вследствие чего будет изменяться и реализуемое значение S/N. Отметим, что чем выше скорость передачи в канале DSL, тем ниже значение S/N, и чем ниже скорость передачи в канале DSL, тем выше S/N. Следовательно, предел помехоустойчивости будет ниже в более длинных кабелях (снижение уровня сигнала и увеличение шумов) или при более высокой скорости передачи в канале DSL.

    Технология DSL с адаптацией скорости передачи (rate adaptive DSL - RADSL) – это технология, в которой скорость передачи корректируется так, чтобы можно было сохранять необходимое значение помехоустойчивости, что позволяет поддерживать значение BER ниже 10 -7 . Испытания показывают, что оптимальные значения запаса помехоустойчивости для служб DMT составляют по 6 dB как для downstream, так и для upstream. Не стоит конфигурировать службу DSL с запасом помехоустойчивости, превышающим оптимальное значение в силу того, что система для обеспечения указанного предела будет готовиться к соединению с очень низкой скоростью передачи данных по каналу DSL. Не следует также задавать и слишком низкое значение предела помехоустойчивости (например, 1 dB), т.к. незначительное увеличение уровня шума приведет к чрезмерному количеству ошибок и процессу повторной подготовки к установлению соединения на более низкой скорости передачи по каналу DSL.

    Помехоустойчивость канала DSL увеличивается при сокращении расстояния (понижается уровень шума) и увеличении диаметра провода (снижаются потери). Разумеется, что увеличение уровня мощности в линии связи также увеличит S/N, но может привести к интерференции с сигналами других служб в этом же кабеле.

    Исправление ошибок в прямом направлении (FEC – Forward Error Correction) осуществляется математически на принимающем конце канала передачи без запроса на повторную передачу ошибочных данных, что позволяет эффективно использовать пропускную способность для данных пользователя. Тем не менее отметим, что даже в ситуации, когда при передаче ошибки не возникает, использование метода FEC приводит к некоторому снижению пропускной способности, т.к. при этом добавляются ненужные служебные сигналы. Отношение числа исправленных ошибок к числу неисправленных показывает эффективность алгоритма исправления ошибок или относительную интенсивность ошибок. С применением метода FEC связано использование двух основных технологий: добавление байтов FEC и перемежение.

    Байты FEC также называются контрольными байтами или избыточными байтами . Байты FEC добавляются к потоку данных пользователя, предоставляя тем самым возможность установить наличие ошибочных данных. Во многих системах можно выбрать следующее число байтов FEC: 0 (отсутствуют), 2, 4, 8, 12 или 16. Очевидно, что чем больше байтов FEC, тем больше эффективность исправления ошибок. Тем не менее, следует учитывать, что чем больше количество байтов FEC, тем бо льшая часть полосы пропускания канала связи будет занята только служебными сигналами, что очень не эффективно для малозашумленных каналов. Можно добавить, что 16 байтов на фрейм (204 – 16 = 188 байт полезной информации) на скорости передачи 256 кбит/с занимают в процентном отношении бо льшую часть полосы пропускания, чем тоже количество байтов FEC на скорости передачи 8 Мбит/с.

    В большинстве систем служебные сигналы FEC выделяются и вычитаются из общего потока перед тем, как сообщать о скорости передачи в канале DSL. Таким образом, наблюдаемая скорость передачи в канале DSL – это, в действительности, доступная пользователю пропускная способность.

    Перемежение – это процесс перестановки пользовательских данных в определенной последовательности, используемый с целью минимизации появления последовательных ошибок в алгоритме FEC Рида-Соломона (Reed - Solomon - RS) на принимающем конце канала. Эффективность использования алгоритма RS при возникновении единичных или разнесенных во времени ошибок (не идущих последовательно) оказывается выше.

    Если в линии передачи на медном проводе возникает шумовой выброс, он может воздействовать на несколько последовательно расположенных битов данных, что приведет к появлению последовательно расположенных ошибочных битов. Поскольку в передатчике данные перемежаются, то при устранении перемежения данных в приемнике не только восстанавливается исходная последовательность битов, но и происходит разнесение ошибочных битов во времени (ошибочные биты появляются в различных байтах). Следовательно, ошибочные биты уже не идут последовательно, и процесс FEC с алгоритмом RS работает более эффективно.

    Уровни мощности сигнала в каналах DSL значительно выше тех, которые применяются при передаче голосовых данных. Это объясняется тем обстоятельством, что погонное затухание телефонной линии очень быстро увеличивается с ростом частоты. Так, например, чтобы нормально принять сигнал на конце линии длиной 5…6 км, потребуется мощность порядка 15…20 dBm (дБмВт) – количество децибел (dB или дБ), отсчитываемых от мощности, равной одному милливатту, рассчитываемой на сопротивлении в 600 Ом.

    Уровни мощности широкополосных сигналов обычно измеряют в dBm/Гц (дБмВт/Гц). Эту величину называют спектральной плотностью мощности (PSD – Power Spectral Density):

    PSD = P - 60 (1)

    Формула (1) справедлива для полосы канала в 1 МГц, т.е. применима только к каналу ADSL.

    Не вдаваясь в технические особенности констатируем, что на работоспособность DSL каналов играют следующие факторы:

  • Мостовые ответвления – удлиненные концы телефонного канала или абонентской линии без терменирования. Мостовое ответвление ведет себя как разомкнутая цепь, т.е. как шлейф линии передачи. Наличие длинных линий (например, длиной 150 м) приводит к отражению сигнала от места ответвления в точку передачи, что и вызывает появление битовых ошибок (BER резко возрастает). Большинство абонентских каналов содержит, по крайней мере, одно мостовое ответвление.
  • Удлинительные катушки – катушки индуктивности, включаемые последовательно к телефонной линии для компенсации емкостной составляющей телефонной линии. На частотах DSL удлинительные катушки ведут себя как разомкнутая цепь (напомним, что индуктивное сопротивление X L = jωL ), оказывающая большое сопротивление ВЧ сигналу. Удлинительные катушки мешают установить DSL-соединение.
  • Интерференция сигнала возникает между сигналами, передаваемыми по находящимся в одной связке каналам DSL , которые используют различные топологии. Кроме того, радиостанции, работающие в АМ-диапазоне, вызывают проблемы в абонентских каналах DSL из-за того, что их частотные диапазоны приходятся на 550…1700 МГц.
  • Фильтры радиопомех устанавливаются во многих зонах, в которых в ходе телефонного разговора можно слышать передачи АС-радиостанций. В качестве таких ВЧ фильтров в простейшем случае используют параллельно включенные конденсаторы, которые на ВЧ и приводят к эффекту короткого замыкания (напомним, что X С = 1/jω С ). Фильтры радиопомех ухудшают характеристики канала DSL в кабелях небольшой длины и могут помешать DSL-модемам установить соединение на больших расстояниях.
  • Перекрестная наводка проявляется в канале связи в виде электромагнитных наводок от смежных цепей из медного провода, находящихся в том же пучке кабелей. Перекрестная помеха наиболее сильно проявляется в связках кабелей (множество изолированных медных проводов, объединенных в один кабель), по каждой паре из которых идут сигналы на совпадающих частотах, но с разными видами модуляции.
  • Длина кабеля является наиболее значимым фактором, влияющим на функционирование услуг DSL. С увеличением длины кабеля сечение (диаметр) провода становится все более и более значимым, и помехи, вызванные сигналами других служб, передаваемыми по тому же кабелю, становятся все более ощутимы.
  • Потери кабеля увеличиваются с ростом частоты, прежде всего, из-за емкостной проводимости, распределенной вдоль линии передачи (Y С = jω С ).

  • Сечение провода также играет важную роль на протяженность линии ADSL. Наиболее распространенными сечениями являются провода американского стандарта 24 AWG (American Wire Gauge) и 25 AWG соответственно с диаметрами проводов в 0,5 мм и 0,4 мм. Сопротивление провода длиной 300 м и диаметром 0,5 мм составляет 26 Ом, а диаметром 0,4 мм – 41 Ом, что свидетельствует о весьма ощутимой разнице. Напомним, что телефонная линия – это цепь постоянного тока и длина кабеля в 5 км эквивалентна длине провода в 10 км.
  • Заметим также, что сопротивление медного провода значительно изменяется при колебаниях температуры окружающей среды, особенно при прокладке кабелей по телеграфным столбам, когда они находятся на солнце. Следовательно, при некоторых топологических условиях характеристики DSL канала связи могут сильно изменяться в зависимости от времени суток. С ростом температуры сопротивление провода растет. Растут и потери. А с ростом сопротивления (и связанных с ним потерь) значение S/N уменьшается в силу уменьшения уровня сигнала.

    Заключение

    Технологию DSL можно считать полноправной технологией, которую можно использовать на участках “последней мили” для широкополосных сетей. В различных сценариях могут использоваться отдельные разновидности технологии DSL, что зависит преимущественно от требований к расстоянию и пропускной способности. Существует множество факторов, влияющих на качество соединения, и для того, чтобы улучшить скорость передачи данных по каналу DSL и запас отношения S/N, необходимо настраивать множество параметров. Решение кроется в понимании технологии и того, какие факторы какую роль играют в соединении.

    Топологии сетей DSL у различных провайдеров услуг могут сильно отличаться, поэтому не стоит думать, что если абонентское оборудование (СРЕ) для сети DSL работает на одной несущей, то оно будет работать и на другой. У разных топологий есть свои преимущества и свои недостатки, но все топологии все же широко используются.

    В чем разница между Т1 и DSL технологиями? Как DSL отличается от спутникового Интернета? Какая из этих трех технологий является лучшей и почему? В этой статье, я расскажу вам об этих трех технологиях и различиях между ними.

    Т1, DSL и спутниковые технологии, в первую очередь используются для доступа в Интернет.

    Что такое Т1?

    Т1, также известный как носитель DS1, представляет собой систему передачи сигналов T-carrier, которая используется для передачи голоса и данных. Она была разработана в Bell Labs и широко используется в Японии и Северной Америке. Термин «T-carrier» используется для обозначения цифровой мультиплексированной несущей системы радиосвязи разработанной в лабораториях Белла. DS1 относится к битовому шаблону, используемому на линии T1. Двадцать четыре 8-битных канала составляют схему DS1, в котором каждый канал представляет собой 64 кбит схему. Линия Т1 может нести данных со скоростью 1.544 мегабит в секунду. Она может быть подключена к телефонной сети для передачи голосовых сигналов или быть подключенной к сети маршрутизатора для передачи данных. Она обеспечивает надежную связь и достаточно хорошо выполняется.


    DSL является аббревиатурой Digital Subscriber Loop, которая представляет собой набор технологий, которые обеспечивают передачу данных по местным телефонным сетям. Технология DSL известна как цифровая абонентская линия. Поставщики DSL услуг предлагают скоростью от 256 килобит до 24000 килобит в секунду. DSL, которая поддерживает передачу голоса работает путем деления частоты в телефонной линии на две полосы. Полоса высокой частоты используется для передачи данных, в то время как нижняя используется для переноса речевых сигналов. В системе DSL, DSL-приемопередатчик подключен к телефонной линии пользователя. Для доступа в Интернет, он выполняет самотестирование. Затем он проверяет связь между собой и компьютером, к которому он подключен. И наконец, синхронизирует себя с телефонной линией. Я не хочу запутать вас еще больше, добавив еще одну технологию, но желающие могут прочитать статью о сравнении DSL и кабельного подключения к Интернету.


    Подключение к спутниковому Интернет является системой, в которой данные передаются между компьютерами через спутник. Установление соединения осуществляется через тарелку антенны и приемопередатчик, которые используют радиочастотный спектр для передачи данных. Скорость входящей линии составляет меньше, чем скорость нисходящей линии, которые зависят от возможностей интернет-трафика и серверов. Поскольку сигналам приходится преодолевать большие расстояния, это означает, что интервал между запросом данных и получением ответа будет достаточно продолжительным. В общем, спутниковый доступ в Интернет имеет большое применение в тех местах, где наземные доступ в Интернет не доступен. Спутниковые Интернет-сервисы лучше всего подходят для мобильного использования. Они предоставляют пользователям во всем мире и все время подключения к Интернету.

    Разница между T1, DSL или спутниковый интернет

    Основное различие между T1 и DSL - это цена. Т1, который предлагает скорость около 1,5 Мбит / с стоит намного дороже, чем DSL-линия. Кроме того, линия Т1 напрямую подключается к порту 1,5 Мбит/с, а ДСЛ подключается к DSLAM (мультиплексор (модем) доступа цифровой абонентской линии xDSL). Т1 соединение обеспечивает последовательную и бесперебойную пропускную способность через специальный порт, в то время как производительность линии DSL зависит от объема трафика на DSLAM. Еще одно важное различие между этими двумя технологиями является расстояние. DSL технология чувствительна к расстоянию и работает в диапазоне 4500-5500 метров, линия T1 может быть доступна в отдаленных районах, и работает в диапазоне 30-80 км.

    Как спутниковый интернет отличается от ДСЛ? Во-первых, спутниковый интернет дает пользователям постоянное подключение к Интернету, обеспечивая двухсторонний доступ в Интернет и постоянную пропускную способность. Спутниковые услуги могут быть доступны в любое время и в любом месте. Технология DSL, так как она работает через телефонные линии, ни предлагает ни постоянную скорость, ни доступность. Кроме того, она включает в себя огромное количество кабелей, в то время как спутниковый интернет не требует каких-либо проводов.

    Все три способа доступа к сети Интернет имеют свои плюсы и минусы. Они имеют сравнительные преимущества друг перед другом. В конечном итоге, каждый из вас сам должен решать, какую технологию, выбрать для себя. И теперь, когда вы получили некоторые знания о каждой из них, то принять решение будет проще.

    Широкое распространение DSL (Digital Subscriber Line), что в буквальном переводе означает «цифровая абонентская линия», обусловлено тем обстоятельством, что в данном случае, так же как и в случае традиционных пользовательских модемов, используется обычная телефонная линия. То есть инфраструктура для создания DSL-соединений уже существует. Однако, в отличие от традиционных коммутируемых соединений, DSL-соединение является широкополосным и не упирается в ограничение по ширине спектра сигнала в 3100 Гц, характерное для коммутируемых линий связи. Кроме того, DSL-модемы передают данные в цифровой форме, а не используют цифроаналоговое преобразование при передаче и аналого-цифровое преобразование при приеме данных, что характерно для традиционных аналоговых модемов.

    Технология DSL позволяет значительно расширить полосу пропускания старых медных телефонных линий, соединяющих телефонные станции с индивидуальными абонентами. Любой абонент имеет возможность значительно увеличить с помощью технологии DSL скорость своего соединения. Помимо того, что использование DSL-соединения обеспечивает вам круглосуточный доступ в Интернет, сохраняется также возможность нормальной работы обычной телефонной связи.

    Скорость связи DSL-соединения зависит от качества и протяженности линий, соединяющих пользователя и провайдера. При этом провайдеры обычно дают пользователю возможность самому выбрать скорость соединения, наиболее соответствующую его индивидуальным потребностям.

    Когда говорят о DSL-технологиях, обычно имеют в виду целый спектр технологий, которые иногда называют xDSL. Различные технологии отличаются друг от друга своим предназначением, скоростью «нисходящего» (от сети к пользователю) и «восходящего» (от пользователя в сеть) трафика и максимальным расстоянием. Наиболее популярны следующие DSL-технологии: ADSL, G.Lite, RADSL, HDSL, VDSL, SDSL.

    ADSL (Asymmetric Digital Subscriber Line) - это асимметричное DSL-соединение, при котором скорость нисходящего трафика выше, чем скорость восходящего трафика. Такая асимметрия делает технологию ADSL идеальной для организации доступа в Интернет, когда пользователи получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость нисходящего трафика в пределах от 1,5 до 8 Мбит/с и скорость восходящего трафика от 640 Кбит/с до 1,5 Мбит/с.

    ADSL позволяет передавать данные со скоростью 1,54 Мбит/с на расстояние до 5,5 км по одной витой паре проводов. Скорость передачи порядка 6-8 Мбит/с может быть достигнута при передаче данных на расстояние не более 3,5 км.

    G.Lite , известное также как ADSL.Lite, - это упрощенный вариант ADSL, обеспечивающий скорость нисходящего трафика до 1,5 Мбит/с и скорость восходящего трафика до 512 Кбит/с. Как и в случае ADSL-соединения, здесь используется всего одна витая пара.

    RADSL (Rate Adaptive Digital Subscriber Line) - это вариант асимметричного DSL-соединения с адаптацией скорости соединения. Технология RADSL обеспечивает такую же скорость передачи данных, что и технология ADSL, но при этом позволяет адаптировать скорость передачи в зависимости от протяженности линии и ее зашумленности.

    HDSL (High Bit-Rate Digital Subscriber Line) - это высокоскоростное DSL-соединение. В отличие от уже рассмотренных DSL-технологий, в данном случае предусматривается симметричное DSL-соединение по нисходящему и восходящему трафикам. HDSL-соединение требует наличия двух или даже трех пар проводов. При использовании двух пар скорость передачи данных составляет 1,544 Мбит/с, а при использовании трех пар - 2,048 Мбит/с. Телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1. Линии Т1 применяются в США и обеспечивают скорость передачи данных 1,544 Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2,048 Мбит/с.

    Технология HDSL2 является логическим результатом развития технологии HDSL. Данная технология обеспечивает характеристики, аналогичные технологии HDSL, но при этом использует только одну пару проводов.

    SDSL (Single Line Digital Subscriber Line) - это симметричное по скорости нисходящего и восходящего трафиков однолинейное DSL-соединение. Технология SDSL, так же как и HDSL, обеспечивает скорость соединения, соответствующую линиям T1/E1, но при использовании всего одной линии (одной пары телефонных проводов). В этом смысле технология SDSL схожа с HDSL2. Максимальное расстояние передачи по SDSL-соединению ограничено 3 км.

    VDSL (Very High Bit-Rate Digital Subscriber Line) - это сверхвысокоскоростная DSL-линия.

    В асимметричном режиме по одной витой паре скорость нисходящего трафика составляет от 13 до 52 Мбит/с, а скорость восходящего трафика - от 1,5 до 2,3 Мбит/с.

    В симметричном режиме поддерживаются скорости до 26 Мбит/с.

    Максимальное расстояние передачи данных для этой технологии составляет от 300 до 1300 м.

    Из всех рассмотренных DSL-соединений особый интерес для конечного пользователя представляет именно ADSL.Lite. Собственно, большинство провайдеров предлагают конечным пользователям именно этот тип широкополосного соединения.

    Для реализации ADSL-соединения к окончаниям медной пары подключаются специальные цифровые устройства (сплиттеры) - один на АТС, другой в квартире абонента, - которые обеспечивают одновременную работу и телефона, и Интернета. Абонентский сплиттер имеет два выхода, один из которых подключается к телефону (или к офисной АТС), а другой - к ADSL-модему. Аналогично один выход станционного сплиттера подключен к АТС, а другой - к мультиплексору (DSLAM), связанному с Интернетом. В результате вся полоса пропускания медной пары разбивается на 247 отдельных каналов, с пропускной способностью 4 кГц каждый. Если отвлечься от технических деталей, то это выглядит так, будто между абонентом и зданием АТС проложено 247 независимых телефонных линий, по двум из которых передается голос, а по остальным - данные.

    Весь скоростной поток разбивается на большое число более мелких потоков, которые на концах линии вновь собираются в единое целое. Система управления построена таким образом, что непрерывно производится мониторинг состояния каждого канала и информация направляется в те из них, которые обладают наилучшими характеристиками.

    Новое на сайте

    >

    Самое популярное